Совершенные числа, компанейские числа - удивительные числа. Совершенные числа

Удивительные числа

4.2 Совершенные числа

Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Никомах Герасский, знаменитый философ и математик, писал: " Совершенные числа красивы. Но известно, что вещи редки и немногочисленны, безобразные встречаются в изобилии. Избыточными и недостаточными являются почти все числа, в то время как совершенных чисел немного" Но, сколько их, Никомах, живший в первом столетии нашей эры не знал.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число).

Первым прекрасным совершенным числом, о котором знали математики Древней Греции, было число "6". На шестом месте на званном пиру возлежал самый уважаемый, самый почетный гость. В библейских преданиях утверждается, что мир был создан в шесть дней, ведь более совершенного числа, среди совершенных чисел, чем "6", нет, поскольку оно первое среди них.

Рассмотрим число 6. Число имеет делители 1, 2, 3 и само число 6. Если сложить делители, отличные от самого числа 1 + 2 + 3 то мы получим 6. Значит, число 6 дружественно самому себе и является первым совершенным числом.

Следующим совершенным числом, известным древним, было "28". Мартин Гарднер усматривал в этом числе особый смысл. По его мнению, Луна обновляется за 28 суток, потому что число "28" - совершенное. В Риме в 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала расположены двадцать восемь келий. Это было здание неопифагорейской академии наук. В ней было двадцать восемь членов. До последнего времени столько же членов, часто просто по обычаю, причины которого давным-давно забыты, полагалось иметь во многих ученых обществах. До Евклида были известны только эти два совершенных числа, и никто не знал, существуют ли другие совершенные числа и сколько таких чисел вообще может быть.

Благодаря своей формуле, Евклид сумел найти еще два совершенных числа: 496 и 8128.

Почти полторы тысячи лет люди знали только четыре совершенных числа, и никто не знал, могут ли существовать еще числа, которые можно представить в евклидовской формуле, и никто не мог сказать, возможны ли совершенные числа, не удовлетворяющие формуле Евклида.

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел.

Все совершенные числа треугольные. Это значит, что, взяв совершенные число шаров, мы всегда сможем сложить из них равносторонний треугольник.

Все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 1 3 + 3 3 + 5 3 …

Сумма обратных всем делителям совершенного числа, включая его самого, всегда равна 2.

Кроме того, совершенство чисел тесно связано с двоичностью. Числа: 4=22, 8 = 2? 2? 2, 16 = 2 ? 2 ? 2 ? 2 и т.д. называются степенями числа 2 и могут быть представлены в виде 2n, где n - число перемноженных двоек. Все степени числа 2 чуть-чуть "не достают" до того, чтобы стать совершенными, так как сумма их делителей всегда на единицу меньше самого числа.

Все совершенные числа (кроме 6) заканчиваются в десятичной записи на 16, 28, 36, 56, 76 или 96.

Властивості простих чисел

Взаємно прості числа -- натуральні або цілі числа, які не мають спільних дільників більших за 1, або, інакше кажучи, якщо їх найбільший спільний дільник дорівнює 1. Таким чином, 2 і 3 -- взаємно прості, а 2 і 4 -- ні (діляться на 2)...

Математика в средние века

Необходимым условием применения метода фан-чэн к системам уравнений было введение отрицательных чисел. Например, при решении системы, получаем таблицу. Следующий шаг: вычитание элементов третьего столбца справа из элементов первого...

Введем новое недействительное число, квадрат которого равен -1. Это число обозначим символом Я и назовем мнимой единицей. Итак, (2.1) Тогда. (2.2) 1. Алгебраическая форма комплексного числа Если, то число (2.3) называется комплексным числом...

Рекуррентно заданные числовые последовательности

При решении многих задач часто приходится сталкиваться с последовательностями, заданными рекуррентно, но, в отличии от последовательности Фибоначчи, не всегда возможно получить её аналитическое задание...

Решение математических задач средствами Excel

Мы сталкиваемся с числами буквально каждое мгновение нашей земной жизни. Еще у древних греков существовала гематрия (нумерология). Для изображения чисел использовались буквы алфавита. Каждому имени или написанному слову соответствовало определенное число. На сегодня наука математика достигла очень высокой степени развития. Используемых в различных расчетах чисел так много, что они сведены в определенные группы. Особое место среди них занимают совершенные числа.

Истоки

В Древней Греции люди сравнивали свойства чисел в соответствии с их именами. Делителям чисел была отведена особая роль в нумерологии. В связи с этим, идеальными (совершенными) числами были те, что равнялись сумме своих делителей. Но, древние греки в состав делителей не включали само число. Чтобы лучше понять, что такое совершенные числа, покажем это на примерах.

Исходя из этого определения, самое меньшее идеальное число - это 6. После него будет 28. Затем 496.

Пифагор считал, что есть особенные числа. Такого же мнения придерживался и Эвклид. Для них эти числа были настолько необыкновенны и специфичны, что они ассоциировали их с мистическими. Таким числам свойственно быть совершенными. Вот, что такое совершенные числа для Пифагора и Эвклида. К ним относились 6 и 28.

Ключ

Математики всегда стремятся при решении задачи с несколькими вариантами решения найти общий ключ для нахождения ответа.

Так, они искали формулу, определяющую идеальное число. Но получалась лишь гипотеза, которую нужно было еще доказать. Представьте себе, уже определив, что такое совершенные числа, математики потратили больше тысячи лет, чтобы определить пятое из них! Спустя 1500 лет оно стало известно.

Очень весомый вклад в расчетах идеальных чисел внесли ученые Ферма и Мерсен (XVII ст.). Они предложили формулу для их вычисления. Благодаря французским математикам и трудам многих других ученых на начало 2018 года количество совершенных чисел достигло 50.

Прогресс

Безусловно, если на открытие совершенного числа, которое по счету было уже пятым, ушло полтора тысячелетия, то сегодня благодаря компьютерам они вычисляются намного быстрее. Например, открытие 39-го идеального числа пришлось на 2001 год. Оно имеет 4 миллиона знаков. В феврале 2008 года открыли 44-е совершенное число. В 2010 году - 47-е идеальное, и к 2018 году, как было сказано выше, открыто 50-е число со статусом совершенства.

Есть еще одна интересная особенность. Изучая, что такое совершенные числа, математики сделали открытие - они все четные.

Немного истории

Доподлинно неизвестно, когда впервые были замечены числа, соответствующие идеалу. Однако предполагают, что еще в древнем Египте и Вавилоне они изображались на пальцевом счете. И нетрудно догадаться, какое совершенное число они изображали. было 6. До самого пятого века нашей эры сохранялся счет с помощью пальцев. Для показа числа 6 на руке загибали безымянный палец и выпрямляли остальные.

В Древнем Египте мерой длины служил локоть. Это было равносильно длине двадцати восьми пальцев. А, например, в Древнем Риме был интересный обычай - отводить шестое место на пирах почетным и знатным гостям.

Последователи Пифагора

Последователи Пифагора тоже увлекались идеальными числами. Какое из чисел является совершенным после 28, очень интересовало Евклида (IV в. до н. э.). Он дал ключ к поиску всех идеальных четных чисел. Интерес представляет девятая книга Евклидовых «Начал». Среди его теорем есть та, которая объясняет, что совершенным называется число, обладающее замечательным свойством:

значение р будет равносильно выражению 1+2+4+…+2n, что можно записать как 2n+1-1. Это простое число. Но уже 2np будет совершенным.

Чтобы убедиться в справедливости этого утверждения, нужно рассмотреть все собственные делители числа 2np и подсчитать их сумму.

Это открытие предположительно принадлежит ученикам Пифагора.

Правило Евклида

Кроме того, Евклид доказал: вид четного совершенного числа представлен математически как 2n-1(2n-1). Если n - простое и 2n-1 будет простым.

Правилом Евклида пользовался Никомах из Герасы (I-II в.). Он нашел идеальные числа как 6, 28, 496, 8128. Никомах Геразский высказывался об идеальных числах как про очень красивые, но малочисленные математические понятия.

Полторы тысячи лет спустя немецкий ученый Региомонтан (Йоганн Мюллер) открыл пятое совершенное число в математике. Им оказалось 33 550 336.

Дальнейшие поиски математиков

Числа, которые считаются простыми и относятся к ряду 2n-1, носят название - числа Мерсенна. Это название им дано в честь французского математика, жившего в XVII веке. Именно он открыл восьмое совершенное число в 1644 году.

А вот в 1867 году математический мир потрясла новость от шестнадцатилетнего итальянца Никколо Паганини (тезка известного скрипача), который сообщил о дружественной паре чисел 1184 и 1210. Она ближайшая к 220 и 284. Удивительно, но пару проглядели все именитые математики, занимавшиеся изучением дружественных чисел.

Число 6 делится на себя, а также на 1, 2 и 3, и 6 = 1+2+3.
Число 28 имеет пять делителей, кроме самого себя: 1, 2, 4, 7 и 14, причем 28 = 1+2+4+7+14.
Можно заметить, что далеко не всякое натуральное число равно сумме всех своих делителей, отличающихся от этого числа. Числа, которые обладают этим свойством были названы совершенными.

Ещё Евклидом (3 в. до н. э.) было указано, что чётные совершенные числа можно получить из формулы: 2 p –1 (2 p – 1) при условии, что р и 2 p есть числа простые. Таким путём было найдено около 20 чётных совершенных числа. До сих пор неизвестно ни одного нечётного совершенного числа и вопрос о существовании их остаётся открытым. Исследования таких чисел были начаты пифагорейцами, приписывавшими им и их сочетаниям особый мистический смысл.

Первое самое меньшее совершенное число – это 6 (1 + 2 + 3 = 6).
Может быть, именно поэтому шестое место считалось самым почетным на пирах у древних римлян.

Второе по старшинству совершенное число – это 28 (1 + 2 + 4 + 7 + 14 = 28).
В некоторых ученых обществах и академиях полагалось иметь 28 членов. В Риме в 1917 г. при выполнении подземных работ обнаружилось помещение одной из древнейших академий: зал и вокруг него 28 кабинетов – как раз по числу членов академии.

По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число – 496 (1+2+48+16+31+62+124+248 = 496), четвёртое – 8128 , пятое – 33 550 336 , шестое – 8 589 869 056 , седьмое – 137 438 691 328 .

Первые четыре совершенные числа: 6, 28, 496, 8128 были обнаружены очень давно, 2000 лет назад. Эти числа приведены в Арифметике Никомаха Геразского, древнегреческого философа, математика и теоретика музыки.
Пятое совершенное число было выявлено в 1460 г, около 550 лет тому назад. Это число 33550336 обнаружил немецкий математик Региомонтан (XV век).

В XVI веке также немецкий ученый Шейбель нашел еще два совершенных числа: 8 589 869 056 и 137 438 691 328 . Они соответствуют р = 17 и р = 19. В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходившие человеческие возможности. Пока известно 47 чётных совершенных чисел.

Совершенный характер чисел 6 и 28 был признан многими культурами, обратившими внимание на то, что Луна совершает оборот вокруг Земли каждые 28 дней, и утверждавшими, что Бог сотворил мир за 6 дней.
В сочинении «Град Божий» Св. Августин высказал мысль о том, что хотя Бог мог сотворить мир в одно мгновенье, Он предпочел сотворить его за 6 дней, дабы поразмыслить над совершенством мира. По мнению Св. Августина, число 6 совершенно не потому, что Бог избрал его, а потому, что совершенство внутренне присуще природе этого числа. «Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней».

Лев Николаевич Толстой не раз шутливо "хвастался" тем, что дата
его рождения 28 августа (по календарю того времени) является совершенным числом.
Год рождения Л.Н. Толстого (1828)– тоже интересное число: последние две цифры (28) образуют совершенное число; если обменять местами первые цифры, то получится 8128 – четвертое совершенное число.

§ 4. Совершенные числа

Нумерология (или гематрия, как ее иногда еще называют) была распространенным увлечением у древних греков. Естественным объяснением этому является то, что числа в Древней Греции изображались буквами греческого алфавита, и поэтому каждому написанному слову, каждому имени соответствовало некоторое число. Люди могли сравнивать свойства чисел, соответствующих их именам.

Делители или аликвотные части чисел играли важную роль в нумерологии. В этом смысле идеальными, или, как их называют, совершенными числами являлись такие числа, которые составлялись из своих аликвотиых частей, т. е. равнялись сумме своих делителей. Здесь следует отметить, что древние греки не включали само число в состав его делителей.

Наименьшим совершенным числом является 6:

За ним следует число 28:

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.

Часто математик, увлеченный решением какой-либо проблемы и имеющий одно или несколько частных решений этой задачи, пытается найти закономерности, которые смогли бы дать ключ к нахождению общего решения. Указанные нами совершенные числа могут быть записаны в виде

6 = 2 3 = 2(2 2 - 1),

28 = 2 2 7 = 2 2 (2 3 - 1),

496 = 24 31 = 2 4 (2 5 - 1).

Это наталкивает нас на гипотезу:

Число является совершенным, если оно представляется в виде

Р = 2 p -1 (2 p - 1) = 2 р q , (3.4.1)

q = 2 p - 1

является простым числом Мерсенна.

Этот результат, известный еще грекам, несложно доказать. Делителями числа Р , включая само число Р , очевидно, являются следующие числа:

1, 2, 2 2 …, 2 р-1 ,

q , 2q , 2 2 q …, 2 р-1 q .

Запишем сумму этих делителей

1 + 2 +… + 2 р -1 + q (1 + 2 +… + 2 р -1),

которая равна

(1 + 2 +… + 2 р -1)(q + 1) = (1 + 2 +… + 2 р -1) 2 р

Если вы не помните формулы для суммы членов геометрической прогрессии,

S = 1 + 2 +… + 2 р -1 ,

то умножьте эту сумму на 2:

2S = 2 + 2 2 +… +2 р -1 + 2 р ,

а затем, вычтя S , получите

S = 2 p - 1 = q .

Таким образом, сумма всех делителей числа Р есть

2 p q = 2 2 p -1 q,

а сумма всех делителей, кроме самого числа Р = 2 p -1 q , равна

2 2 p -1 q - 2 p -1 q = 2 p -1 q = Р.

Итак, наше число является совершенным.

Из этого результата следует, что каждое простое число Мерсенна порождает совершенное число. В § 2 второй главы говорилось, что известно всего 23 простых числа Мерсенна, следовательно, мы знаем также и 23 совершенных числа. Существуют ли другие виды совершенных чисел? Все совершенные числа вида (3.4.1) являются четными, можно доказать, что любое четное совершенное число имеет вид (3.4.1). Остается вопрос: существуют ли нечетные совершенные числа? В настоящее время мы не знаем ни одного такого числа, и вопрос о существовании нечетных совершенных чисел является одной из самых знаменитых проблем теории чисел. Если бы удалось обнаружить такое число, то это было бы крупным достижением. Вы можете поддаться соблазну найти такое число, перебирая различные нечетные числа. Но мы не советуем этого делать, так как по последним сообщениям Брайена Такхермана из IBM (1968), нечетное совершенное число должно иметь по крайней мере 36 знаков.

Система задач 3.4.

1. Используя список простых чисел Мерсенна, найдите четвертое и пятое совершенные числа.

Из книги Искатели необычайных автографов автора Левшин Владимир Артурович

ЧИСЛА, ЧИСЛА, ЧИСЛА… - Есть такая книга, - начал Мате, - «Диалоги о математике». Написал ее выдающийся венгерский математик нашего века Альфред Реньи. Форма диалога выбрана им не случайно, как не случайно, вероятно, обратился к ней когда-то Галилео Галилей.Жанр диалога

Из книги Приглашение в теорию чисел автора Оре Ойстин

§ 4. Фигурные числа В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как32 = 9, 72 = 49, 102 = 100,и аналогично с кубами, т. е. такими числами, как23 = 8, 33 = 27, 53 = 125. Рис. 2.Этот геометрический образ рассматриваемой операции с числами является частью богатого

Из книги Научные фокусы и загадки автора Перельман Яков Исидорович

ГЛАВА 2 ПРОСТЫЕ ЧИСЛА § 1. Простые и составные числа Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,6 = 2 3, 9 = 3 3, 30 = 2 15 = 3 10,в то время как другие, например,3, 7, 13, 37,не

Из книги Апология математики, или О математике как части духовной культуры автора Успенский Владимир Андреевич

§ 2. Простые числа Мерсенна В течение нескольких столетий шла погоня за простыми числами. Многие математики боролись за честь стать открывателем самого большого из известных простых чисел. Разумеется, можно было бы выбрать несколько очень больших чисел, не имеющих таких

Из книги Математика любви. Закономерности, доказательства и поиск идеального решения автора Фрай Ханна

§ 3. Простые числа Ферма Существует также еще один тип простых чисел с большой и интересной историей. Они были впервые введены французским юристом Пьером Ферма (1601–1665), который прославился своими выдающимися математическими работами. Первыми пятью простыми числами

Из книги Тайная жизнь чисел [Любопытные разделы математики] автора Наварро Хоакин

§ 5. Дружественные числа Дружественные числа также входят в наследство, доставшееся нам от греческой нумерологии. Если у двух людей имена были таковы, что их числовые значения удовлетворяли следующему условию: сумма частей (делителей) одного из них равнялась второму

Из книги Том 9. Загадка Ферма. Трехвековой вызов математике автора Виолант-и-Хольц Альберт

§ 2. Взаимно простые числа Число 1 является общим делителем для любой пары чисел а и b. Может случиться, что единица будет единственным их общим делителем, т. е.d0 = D(a, b) = 1. (4.2.1)В этом случае мы говорим, что числа а и b взаимно простые.Пример. (39, 22) = 1.Если числа имеют общий

Из книги автора

§ 1. Числа «Все есть число» - учили древние пифагорейцы. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда

Из книги автора

44. Какие числа? Какие два целых числа, если их перемножить, составят семь?Не забудьте, что оба числа должны быть целые, поэтому такие ответы, как З1/2 ? 2 или 21/3 ? 3, не

Из книги автора

47. Три числа Какие три целых числа, если их перемножить, дают столько же, сколько получается от их Из книги автора

Магические числа Как и во многих ранее проведенных опросах, выяснилось, что среднее число сексуальных партнеров в течение жизни респондентов относительно невелико: примерно семь для гетеросексуальных женщин и примерно тринадцать для гетеросексуальных мужчин.

Из книги автора

Глава 1 Числа Альберт! Перестань указывать Богу, что Ему делать! Нильс Бор - Альберту Эйнштейну Вначале были число и фигура. Когда человек попытался овладеть ими, родилась наука, и человек начал познавать окружающий мир. Развитие науки часто сопровождалось забавными,

Из книги автора

Приложение Фигурные числа Фигурное число - это число, которое может быть представлено в виде точек, расположенных в форме правильного многоугольника. Эти числа долгое время служили объектом пристального внимания математиков. Греки приписывали им магические свойства,

Примеры

  • 1-е совершенное число - имеет следующие собственные делители: 1, 2, 3; их сумма 1 + 2 + 3 равна 6.
  • 2-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 7, 14; их сумма 1 + 2 + 4 + 7 + 14 равна 28.
  • 3-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 31, 62, 124, 248; их сумма 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 равна 496.
  • 4-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064; их сумма 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 равна 8128.

История изучения

Чётные совершенные числа

Алгоритм построения чётных совершенных чисел описан в IX книге Начал Евклида , где было доказано, что число является совершенным, если число является простым (т. н. простые числа Мерсенна) . Впоследствии Леонард Эйлер доказал, что все чётные совершенные числа имеют вид, указанный Евклидом.

Первые четыре совершенных числа приведены в Арифметике Никомаха Геразского . Пятое совершенное число 33 550 336 обнаружил немецкий математик Региомонтан (XV век). В XVI веке немецкий ученый Шейбель нашел ещё два совершенных числа: 8 589 869 056 и 137 438 691 328. Они соответствуют р = 17 и р = 19. В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходившие человеческие возможности.

На апрель 2010 года известно 47 простых чисел Мерсенна и соответствующих им чётных совершенных чисел, поиском новых простых чисел Мерсенна занимается проект распределённых вычислений GIMPS .

Нечётные совершенные числа

Нечётных совершенных чисел до сих пор не обнаружено, однако не доказано и то, что их не существует. Неизвестно также, бесконечно ли множество всех совершенных чисел.

Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности. Поиском нечётных совершенных чисел занимается проект распределённых вычислений OddPerfect.org .

Свойства

Примечательные факты

Особенный («совершенный») характер чисел 6 и 28 был признан в культурах, базирующихся на авраамических религиях , - утверждающих, что Бог сотворил мир за 6 дней и обративших внимание на то, что Луна совершает оборот вокруг Земли примерно за 28 дней.

«Не менее важна идея, выраженная числом 496. Это „теософское расширение“ числа 31 (то есть сумма всех целых чисел от 1 до 31). Помимо всего прочего, это сумма слова Малькут , означающего „Царство“. Таким образом, Царство, полное проявление первичной идеи Бога, предстает в гематрии как естественное дополнение или проявление числа 31, которое является числом имени 78».

"Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней."

См. также

  • Слегка избыточные числа (квазисовершенные числа)

Примечания

Ссылки

  • Депман И. Совершенные числа // Квант . - 1991. - № 5. - С. 13-17.

Wikimedia Foundation . 2010 .

Смотреть что такое "Совершенное число" в других словарях:

    СОВЕРШЕННОЕ ЧИСЛО, см. ЧИСЛО СОВЕРШЕННОЕ …

    Натуральное число, равное сумме всех своих правильных (т. е. меньших этого числа) делителей. Напр., 6=1+2+3 и 28=1+2+4+7+14 суть совершенные числа … Большой Энциклопедический словарь

    Натуральное число, равное сумме всех своих правильных (то есть меньших этого числа) делителей. Например, 6 = 1 + 2 + 3 и 28 = 1 + 2 + 4 + 7 + 14 суть совершенного числа. * * * СОВЕРШЕННОЕ ЧИСЛО СОВЕРШЕННОЕ ЧИСЛО, натуральное число, равное сумме… … Энциклопедический словарь

    Целое положительное число, обладающее свойством, что оно совпадает с суммой всех своих положительных делителей, отличных от самого этого числа. Таким образом, целое число является С. ч., если С. ч. являются, напр., числа 6, 28, 496, 8128,33550336 … Математическая энциклопедия

    ЧИСЛО, СОВЕРШЕННОЕ, ЦЕЛОЕ число, равное сумме своих ДЕЛИТЕЛЕЙ, включая 1. Например, число 28 является совершенным числом, поскольку его делителями являются числа 1, 2, 4, 7 и 14 (не считая само число 28), а их сумма равна 28. Не известно,… … Научно-технический энциклопедический словарь

    Числа вида Mn = 2n 1, где n натуральное число. Названы в честь французского математика Мерсенна. Последовательность чисел Мерсенна начинается так: 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, ... (последовательность A000225 в OEIS) Иногда числами… … Википедия

    Число - С древнейших времен различным числам приписывали тайные значения. Философы, последователи Пифагора (около 500 г. до Р.Хр.), утверждали, что числа являются основным началом и сущностью вещей и подробно определили качества и роды чисел. По их… … Словарь библейских имен

    Непрерывное замкнутое отображение топологич. пространств, при к ром прообразы всех точек бикомпактны. С. о. во многом аналогичны непрерывным отображениям бикомпактов в хаусдорфовы пространства (каждое такой отображение совершенно), но сферой… … Математическая энциклопедия

    Шестиугольное число фигурное число. n ое шестиугольное число число точек в шестиугольнике, на каждой стороне которого ровно n точек. Формула для n го шестиугольного числа … Википедия

    У этого термина существуют и другие значения, см. 6 (значения). 6 шесть 3 · 4 · 5 · 6 · 7 · 8 · 9 Факторизация: 2×3 Римская запись: VI Двоичное: 110 Восьмеричное: 6 Шестна … Википедия


Понравилась статья? Поделитесь ей
Наверх