Антигены бактерий. Антигенная структура бактерий

Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.

Классификация антигенов.

1. По происхождению:

1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);

2) искусственные (динитрофенилированные белки и углеводы);

3) синтетические (синтезированные полиаминокислоты, полипептиды).

2. По химической природе:

1) белки (гормоны, ферменты и др.);

2) углеводы (декстран);

3) нуклеиновые кислоты (ДНК, РНК);

4) конъюгированные антигены (динитрофенилированные белки);

5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);

6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).

3. По генетическому отношению:

1) аутоантигены (происходят из тканей собственного организма);

2) изоантигены (происходят от генетически идентичного донора);

3) аллоантигены (происходят от неродственного донора того же вида);

4) ксеноантигены (происходят от донора другого вида).

4. По характеру иммунного ответа:

1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);

2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).

Выделяют также:

1) внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентеральным путем;

2) внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;

3) скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.

Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

Свойства антигенов:

1) антигенность – способность вызывать образование антител;

2) иммуногенность – способность создавать иммунитет;

3) специфичность – антигенные особенности, благодаря наличию которых антигены отличаются друг от друга.

Гаптены – низкомолекулярные вещества, которые в обычных условиях не вызывают иммунной реакции, но при связывании с высокомолекулярными молекулами приобретают иммуногенность. К гаптенам относятся лекарственные препараты и большинство химических веществ. Они способны вызывать иммунный ответ после связывания с белками организма.

Антигены или гаптены, которые при повторном попадании в организм вызывают аллергическую реакцию, называются аллергенами.

2. Антигены микроорганизмов

Инфекционные антигены – это антигены бактерий, вирусов, грибов, простейших.

Существуют следующие разновидности бактериальных антигенов:

1) группоспецифические (встречаются у разных видов одного рода или семейства);

2) видоспецифические (встречаются у различных представителей одного вида);

3) типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

В зависимости от локализации в бактериальной клетке различают:

1) О – АГ – полисахарид; входит в состав клеточной стенки бактерий. Определяет антигенную специфичность липополисахарида клеточной стенки; по нему различают сероварианты бактерий одного вида. О – АГ слабо иммуногенен. Он термостабилен (выдерживает кипячение в течение 1–2 ч), химически устойчив (выдерживает обработку формалином и этанолом);

2) липид А – гетеродимер; содержит глюкозамин и жирные кислоты. Он обладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью;

3) Н – АГ; входит в состав бактериальных жгутиков, основа его – белок флагеллин. Термолабилен;

4) К – АГ – гетерогенная группа поверхностных, капсульных антигенов бактерий. Они находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки;

5) токсины, нуклеопротеины, рибосомы и ферменты бактерий.

Антигены вирусов:

1) суперкапсидные антигены – поверхностные оболочечные;

2) белковые и гликопротеидные антигены;

3) капсидные – оболочечные;

4) нуклеопротеидные (сердцевинные) антигены.

Все вирусные антигены Т-зависимые.

Протективные антигены – это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.

Пути проникновения инфекционных антигенов в организм:

1) через поврежденную и иногда неповрежденную кожу;

2) через слизистые оболочки носа, рта, ЖКТ, мочеполовых путей.

Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции.

У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).

Бактериальные антигены:

группоспецифические (встречаются у разных видов одного рода или семейства)

видоспецифические (у различных представителей одного вида);

типоспецифические (определяют серологические варианты - серовары, антигеновары внутри одного вида).

В зависимости от локализации в бактериальной клетке различают К-, Н-, О-антигены (обозначают буквами латинского алфавита).

О-АГ - липополисахарид клеточной стенки грамотрицательных бактерий. Состоит из полисахаридной цепочки (собственно О-Аг) и липида А.

Полисахарид термостабилен (выдерживает кипячение в течение 1-2 часов), химически устойчив (выдерживает обработку формалином и этанолом). Чистый О-АГ слабо иммуногенен. Проявляет вариабельность структуры и по нему различают много серовариантов бактерий одного вида. Например, для каждой группы сальмонелл характерно наличие определенного О-АГ (полисахарида) - у группы А

Это фактор 2, у группы В - фактор 4 и т.д. У R-форм бактерий О-АГ теряет боковые цепи

полисахарида и типоспецифичность.

Липид А - содержит глюкозамин и жирные кислоты. Он обладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью. В целом ЛПС является эндотоксином. Уже в небольших дозах вызывает лихорадку из-за активации макрофагов и выделения ими ИЛ1, ФНО и других цитокинов, дегрануляцию гранулоцитов, агрегацию тромбоцитов. Он может связываться с любыми клетками организма, но особенно с макрофагами. В больших дозах угнетает фагоцитоз, вызывает токсикоз, нарушение функции сердечнососудистой системы, тромбозы, эндотоксический шок. ЛПС некоторых бактерий входит в состав иммуностимуляторов (продигиозан,

пирогенал). Пептидогликаны клеточной стенки бактерий обладают сильным адьювантным эффектом на клетки СИ.

Н-АГ входит в состав бактериальных жгутиков, основа его - белок флагеллин. Термолабилен.

К-АГ - это гетерогенная группа поверхностных, капсульных АГ бактерий.

Они находится в капсуле. Содержат главным образом кислые полисахариды, в состав которых входят галактуроновая, глюкуроновая и идуроновая кислоты. Встречаются вариации в строении этих антигенов, на основании чего, например, различают 75 типов (серотипов) пневмококков, 80 типов клебсиелл и т.д. Капсульные антигены используются для приготовления вакцин менингококков, пневмококков, клебсиелл. Однако, введение высоких доз полисахаридных антигенов может вызвать толерантность.

Антигенами бактерий являются также их токсины, рибосомы и ферменты.

Некоторые микроорганизмы содержат перекрестнореагируюшие - антигенные детерминанты встречающиеся у микроорганизмов и человека/животных.

У микробов различных видов и у человека встречаются общие, сходные по строению АГ. Эти явления называются антигенной мимикрией. Часто перекрестнореагируюшие антигены отражают филогенетическую общность данных представителей, иногда являются результатом случайного сходства конформации и зарядов - молекул АГ.

Например, АГ Форсмана содержится в эритроцитах барача, сальмонеллах и у морских свинок.

Гемолитические стрептококки группы А содержат перекрестно реагирующие АГ (в частности, М-протеин), общие с АГ эндокарда и клубочков почек человека. Такие бактериальные антигены вызывают образование антител, перекрестно реагирующих с клетками человека, что приводит к развитию ревматизма и постстрептококкового гломерулонефрита.

У возбудителя сифилиса есть фосфолипиды, сходные по строению с теми, которые имеются в сердце животных и человека. Поэтому кардиолипиновый антиген сердца животных используется для выявления антител к спирохете у больных людей (реакция Вассермана).

Бактерии могут все и еще чуть-чуть. Они создали наш мир – пригодный для дыхания воздух, плодородную почву, полезные ископаемые. Даже возникновение жизни на Земле – результат такого свойства бактерий, как изменчивость, способность тщательно отбирать и передавать по наследству генетическую информацию, направленную на сохранение и развитие вида.

Свойство – это отличительная черта, характерный признак предмета или объекта. Микробиология изучает свойства микроорганизмов – их строение, закономерности развития, роль в сохранении природного баланса и хозяйственной деятельности человека.

При изучении одноклеточных первый этап идентификации опирается на общие свойства бактерий, присущие всем прокариотам (безъядерным клеткам):

  • микроскопические размеры (не видны невооруженным взглядом);
  • огромная скорость обмена веществ и, как следствие, роста и размножения;
  • быстрая адаптация к изменившимся условиям существования;
  • способность меняться в короткие сроки с передачей наследственности;

Еще одна черта, общая для всех одноклеточных, – широкое распространение. Микроорганизмы существуют везде – в воде, воздухе, земле, организме человека и животных. Граничные условия их обитания простираются от температур в сотни градусов и давления воды на глубине в несколько километров до разреженного воздуха и отрицательных температур стратосферы. Правда, любопытные исследователи нашли место на земле, где не так-то просто найти бактерии, – отдельные участки пустыни Атакама (Южная Америка). Эта земля не видела дождя десятки, а возможно, и сотни лет. Даже бактерии сдались – вода необходима любой форме белковой жизни.

Идентификация бактерий по видам

Ученые разделяют бактерии по видам, вернее, пытаются это сделать. Предположительно (ну не известно науке точно!) существуют миллионы видов бактериальных клеток. Но «узнать в лицо» наука может только несколько десятков тысяч, характеристики которых хорошо изучены. Например, бифидобактерии и лактобактерии необходимы для пищеварения, свойства молочнокислых бактерий и дрожжевых грибков используются в промышленности, патогенные микроорганизмы несут болезни или вызывают пищевые отравления, образуя опасные токсины и т. д.

Для видовой идентификации бактерий нужно знать следующие их свойства:

  • морфологические (форма, строение клетки);
  • культуральные (способ питания, условия размножения, т. е факторы роста бактериальной культуры);
  • тинкториальные (реакция на красители, помогающая определить степень опасности для здоровья);
  • биохимические (расщепление питательных веществ, выделение продуктов жизнедеятельности, синтез ферментов, белков, витаминов);
  • антигенные (от англ. antibody-generator – «производитель антител»), вызывающие иммунную реакцию организма.

Морфологические свойства определяют с помощью микроскопии (рассматривая в обычный или электронный микроскоп). Культуральные (биологические) свойства проявляются во время роста культур на питательных средах. Идентификация по биохимическим свойствам нужна для определения отношения клетки к кислороду (способ дыхания), ее ферментативных и редуцирующих (восстановительных) свойств (редукция – химический процесс отнятия кислорода или замена его на водород). Кроме того, биохимические исследования изучают образование отходов жизнедеятельности бактерий (токсинов) и их влияние на окружающую среду.

Анализ всех этих свойств в совокупности помогает определить вид бактериальной клетки. Такая идентификация дает возможность отличать «хорошие» бактерии, приносящие пользу, от вредных болезнетворных микробов с отрицательными свойствами. Строго говоря, это разделение достаточно условно. Один и тот же вид бактерий может оказывать положительное или отрицательное действие в зависимости от ситуации. Например, кишечная палочка является частью микрофлоры здорового человека и принимает активное участие в пищеварении. Но стоит популяции этих бактерий разрастись выше граничных параметров – возникает опасность отравления токсинами, опасными для здоровья.

Как выглядят бактерии

Внешний вид и параметры клетки влияют на ее свойства – подвижность, функциональные особенности, крепление к поверхности. По форме микроорганизмы разделяются на:

  1. Кокки – шаровидные или округлые бактерии. Они различаются по количеству клеток в сцепке:
  • микрококки (единичная клетка);
  • диплококки (две клетки, соединенные между собой);
  • тетракокки (четыре соединенные клетки);
  • стрептококки (соединенные в длину в виде цепи);
  • сарцины (пласты или пакеты из 8, 12, 16 и более штук);
  • стафилококки (соединение имеет форму виноградной грозди).

2. Палочки различают:

  • по форме концов: плоские (обрубленные), округлые (полусфера), острые (конус), утолщенные;
  • по характеру соединения: одиночные, пары, цепочки (стрептобактерии).

3. Спирали имеют изогнутую или спиральную форму (строго говоря, эти бактерии тоже относят к палочковидным). Они выделяются формой и количеством завитков:

  • вибрионы – немного выгнутые;
  • спириллы – один или несколько витков (до четырех);
  • свыше четырех завитков имеют борелли (от 4 до 12) и (любимое ругательство доктора Быкова, возбудители сифилиса) трепонемы (от 14 до 17 мелких витков);
  • лептоспиры похожи на латинскую «S».

Кроме этого, существуют звездочки, кубики, С-образные и другие формы клеток. Более того, один и тот же вид бактерий в зависимости от обстоятельств может менять форму, причем значительно. Например, молочнокислые бактерии представляют собой палочки, но одни представители вида могут иметь форму очень короткой палочки (почти шара), тогда как другие вытягиваются в длину, приближаясь к нитевидным клеткам. Длина в данном случае зависит от состава среды, наличия и процентного содержания кислорода, способа культивирования (искусственного выращивания) микроорганизмов.

С размерами одноклеточных немного проще:

  • самые маленькие (бруцеллы);
  • средние (бактероид, кишечная палочка);
  • большие (бациллы, клостридии).

Строение микроорганизмов

Общим для всех прокариот является отсутствие ядра, его роль выполняет замкнутая молекула ДНК (нуклеоид). Роль внутренних органов в бактериальной клетке выполняют различные включения, именуемые по аналогии органеллами. У разных видов бактерий этот набор не одинаков, но есть некий обязательный минимум, присутствующий у каждой бактерии:

  • нуклеоид (аналог ядра);
  • клеточная стенка (наружный слой различной толщины);
  • цитоплазматическая мембрана (тонкая пленка между внутренней полужидкой средой и клеточной стенкой);
  • цитоплазма (внутренняя полужидкая субстанция, в которой плавают органеллы);
  • рибосомы (молекулы РНК, содержащие дополнительную или резервную генетическую информацию).

Первые попытки рассмотреть строение бактерии в микроскоп выявили одну важную деталь – бактериальные клетки прозрачны, увидеть их без дополнительной подготовки невозможно. Датский исследователь Грам предложил метод, позволяющий окрашивать микроорганизмы с помощью анилиновых красителей. Оказалось, что в зависимости от строения наружной оболочки бактерии воспринимают краситель по-разному – одни задерживают пигмент, другие обесцвечиваются после окончательной промывки подготовленного препарата спиртосодержащим раствором (промывка производится в обоих случаях, но только в одном вымывает краску). По толщине клеточных стенок бактерии разделяют на две большие группы:

  • грамположительные (толстая стенка поддается окраске);
  • грамотрицательные (тонкая стенка не удерживает краситель).

Эти свойства важны для идентификации – чаще всего грамотрицательными бывают вредные (патогенные) микроорганизмы. Подобное разделение особенно удобно для медицинских исследований. Можно получить быстрый результат при относительно простом лабораторном анализе.

Помимо основных, у микроорганизмов существуют дополнительные структуры, определяющие некоторые важные свойства клетки:

  1. Капсула – поверхностный (над клеточной оболочкой) слизистый слой, образующийся как реакция на окружающую среду. Т. е. в комфортных условиях бактерия вполне может обойтись без капсулы, но при малейшей угрозе защищает себя мягкой оболочкой, дающей дополнительную безопасность.
  2. Жгутики – длинные (длиннее тела бактерии) нитевидные органы перемещения. Они работают как своеобразный двигатель, позволяя клетке свободно перемещаться.
  3. Пили – очень мелкие ворсинки на поверхности бактерии (тоньше и короче жгутиков). Пили не перемещают клетку, но помогают ей надежно закрепиться в выбранном месте.
  4. Споры – твердые включения, образующиеся внутри бактерий как реакция на угрозу гибели (отсутствие воды, агрессивная среда). Они позволяют клетке пережить тяжелые времена (иногда бактерия может «спать» годами и десятилетиями) и снова возродиться. Но споры – это только инструмент выживания, а не размножения.

Есть еще дополнительные включения, придающие бактерии различные свойства. Так, хлоросомы отвечают за выработку кислорода из энергии солнечного света (фотосинтез); газовые вакуоли придают клетке плавучесть; липиды и волютин сохраняют запасы пищи и энергии и т. д.

Рост и размножение

Для точной идентификации и промышленного производства необходимы чистые культуры бактерий – популяция, выращенная из единичной клетки в лабораторных условиях. А для этого нужно знать их биологические свойства – в каких условиях и каким образом растут и размножаются микроорганизмы. Рост – это увеличение клеточной массы и всех ее структур, а размножение – увеличение количества клеток в колонии.

Большинство бактерий размножаются методом бинарного деления, т. е. клетка делится надвое посередине, образуя два идентичных организма. Метод почкования отличается от бинарного деления только формой – на поверхности клетки образуется выступ, куда перемещается половинка разделившегося заменителя ядра (нуклеоида), затем выступ разрастается и отделяется от материнской клетки.

Более сложный метод – генетическая рекомбинация, напоминающая половое размножение. Суть метода в том, что часть ДНК попадает в клетку извне (при контакте бактерий между собой, с помощью бактериофагов или в результате поглощения генетического материала погибших клеток). В результате такой метод дает две генетически измененных клетки, несущих информацию от обоих «родителей». Свойства измененной клетки могут значительно отличаться от ее предшественниц. Такой метод размножения позволяет бактериям приспосабливаться к изменившимся условиям, возможно, именно он послужил основой возникновения разумной жизни на планете.

Кроме того, рекомбинантный метод размножения облегчает генетические исследования. Бактерии меняются в очень короткие сроки и при этом сохраняют наследственность. Это дает возможность проследить за несколькими поколениями клетки и оценить положительные и отрицательные изменения в ее структуре, поведении, свойствах.

Особенности дыхания и питания клетки

В зависимости от отношения к кислороду бактерии различаются на:

  1. Анаэробы – микроорганизмы, получающие энергию при отсутствии кислорода. Различают облигатные (строгие) анаэробы, не переносящие кислорода, и факультативные анаэробы (большинство патогенных микробов), основным методом получения энергии которых является бескислородный вариант, но они могут существовать и при доступе кислорода.
  2. Аэробы – клетки, живущие только в кислородосодержащей среде. Строгие аэробы требуют 20% кислорода в атмосфере, микроаэрофилы довольствуются гораздо меньшим содержанием кислорода, но основной метод дыхания у них остается таким же, как и у аэробных клеток.

Идентификация по способу дыхания и питания важна для создания комфортных условий при выращивании бактериальных культур на искусственных средах и в биотехнологиях.

Благодаря разнонаправленным полезным свойствам бактерий получается замкнутый цикл – автотрофы создают органические вещества, используя энергию солнца или неорганические соединения, гетеротрофы (сапрофиты) разлагают органику, возвращая в природу химические компоненты, пригодные для дальнейшего использования.

Ферменты и токсины бактерий (биохимическая активность)

Микроорганизмы вырабатывают белковые вещества – ферменты (лат. «закваска») или энзимы (греч. «закваска»), которые служат катализаторами (ускорителями) в абсолютно всех биологических процессах (обмен веществ и энергии). Причем каждый отдельно взятый фермент отвечает только за один процесс превращения одного соединения в другое. Ферменты делят на:

  • эндоферменты – внутриклеточные вещества, принимают участие в метаболизме клетки.
  • экзоферменты – внеклеточные (выделяемые в окружающую среду), они осуществляют переваривание снаружи бактериальной клетки.

Свойства микроорганизмов выделять определенные ферменты используют для идентификации вида одноклеточных, так как это постоянный и неизменный признак, присущий только данной разновидности клеток. Различают:

  1. Сахаролитические свойства клетки – способность ферментировать (разлагать) углеводы с выделением химической энергии. Например, при спиртовом брожении ферменты дрожжей разлагают сахар на этиловый спирт и углекислый газ.
  2. Протеолитические свойства микроорганизмов – ферментация белков и пептона (крупные белковые фрагменты, образующиеся на начальной стадии переваривания молока и мяса под действием ферментов). Клетки выделяют во внешнюю среду протеолитические ферменты, которые расщепляют белки до промежуточных продуктов (пептоны, аминокислоты) и/или до конечных продуктов распада (сероводород, аммиак). От протеолитических ферментов зависит усвоение белков, свертывание крови.

Биохимическая идентификация дает возможность различать практически идентичные виды бактерий, строение и внешний вид которых неотличимы друг от друга. Например, патогенные энтеробактерии насчитывают сотни видов, определить конкретного виновника заболевания можно только с помощью изучения биохимических свойств.

Вредные отходы жизнедеятельности клетки (токсины) крайне опасны, тем не менее важны. При попадании токсинов в организм происходит выработка антител, которые идентифицируют и нейтрализуют чужеродные объекты. Бактериальные токсины вызывают нарушения обменных и других процессов в клетке, этим объясняется их высокая активность даже при небольшом количестве токсина в организме. Различают:

  • экзотоксины (выделяются в окружающую среду, очень опасны);
  • эндотоксины (структурные компоненты клетки, попадают в окружающую среду только после гибели бактерии, менее опасны, чем экзотоксины).

Любые токсины опасны, но экзотоксины причиняют больший вред. Однако способность этих токсинов вызывать образование антител (антигенов) дает возможность производить лечебные и профилактические сыворотки против многих болезней.

Некоторые бактерии обладают гемолитическими свойствами, т. е. выделяют токсины, разрушающие эритроциты (гемолизины). В естественном процессе обновления эритроцитов гемолитические свойства клеток необходимы, но они могут стать опасными при патологическом развитии процесса.

Бактерии вездесущи и многообразны. Есть «добрые», полезные микроорганизмы, но есть и вредные, патогенные микробы, провоцирующие болезни и выделяющие опасные токсины. Человек научился использовать полезные свойства микроорганизмов в биотехнологиях для улучшения качества жизни. Медицина активно (и иногда эффективно) борется с возбудителями болезней. В силах любого человека защитить себя от вредных бактерий (обычные правила гигиены) и взять все лучшее от многообразия бактериального мира.

Реакции антигенов с антителами называются серологическими или гуморальными, потому что участвующие в них специфические антитела всегда находятся в сыворотке крови.

Реакции между антителами и антигенами, которые происходят в живом организме, могут быть воспроизведены в лабораторных условиях с диагностической целью.

Серологические реакции иммунитета вошли в практику диагностики инфекционных болезней в конце XIX – начале ХХ века.

Использование реакций иммунитета с диагностической целью основано на специфичности взаимодействия антигена с антителом.

Определение антигенной структуры микробов и их токсинов позволило разработать не только диагностикумы и лечебные сыворотки, но и сыворотки диагностические. Иммунные диагностические сыворотки получают путем иммунизации животных (например, кроликов). Эти сыворотки используют для идентификации микробов или экзотоксинов по антигенной структуре при помощи постановки серологических реакций (агглютинации, преципитации, связывания комплемента, пассивной гемагглютинации и др.). Иммунные диагностические сыворотки, обработанные флюорохромом, используются для экспресс – диагностики инфекционных заболеваний методом иммунной флюоресценции.

С помощью известных антигенов (диагностикумов) можно определять наличие антител в сыворотке крови больного или обследуемого (серологическая диагностика инфекционных заболеваний).

Наличие же специфических иммунных сывороток (диагностических) позволяет установить видовую, типовую принадлежность микроорганизма (серологическая идентификация микроба по антигенной структуре).

Внешнее проявление результатов серологических реакций зависит от условий ее постановки и физиологического состояния антигена.

Корпускулярные антигены дают феномен агглютинации, лизиса, связывания комплемента, иммобилизации.

Растворимые антигены дают феномен преципитации, нейтрализации.

В лабораторной практике с диагностической целью используют реакции агглютинации, преципитации, нейтрализации, связывания комплемента, торможения гемагглютинации и др.

Реакция агглютинации (РА)

Благодаря своей специфичности, простоте постановки и демонстративности, реакция агглютинации получила широкое распространение в микробиологической практике для диагностики многих инфекционных заболеваний: брюшного тифа и паратифов (реакция Видаля), сыпного тифа (реакция Вейгля) и др.

Реакция агглютинации основана на специфичности взаимодействия антител (агглютининов) с целыми микробными или другими клетками (агглютиногенами). В результате такого взаимодействия образуются частицы – агломераты, выпадающие в осадок (агглютинат).

В реакции агглютинации могут участвовать как живые, так и убитые бактерии, спирохеты, грибы, простейшие, риккетсии, а также эритроциты и другие клетки.

Реакция протекает в две фазы: первая (невидимая) – специфическая, соединение антигена и антител, вторая (видимая) – неспецифическая, склеивание антигенов, т.е. образование агглютината.

Агглютинат образуется при соединении одного активного центра двухвалентного антитела с детерминантной группой антигена.

Реакция агглютинации, как и любая серологическая реакция, протекает в присутствии электролитов.

Внешне проявление положительной реакции агглютинации имеет двоякий характер. У безжгутиковых микробов, имеющих только соматический О- антиген, происходит склеивание непосредственно самих микробных клеток. Такая агглютинация называется мелкозернистой. Он происходит в течение 18 – 22 часов.

У жгутиковых микробов имеются два антигена – соматический О- антиген и жгутиковый Н- антиген. Если клетки склеиваются жгутиками, образуются крупные рыхлые хлопья и такая реакция агглютинации называется крупнозернистой. Она наступает в течение 2 – 4 часов.

Реакцию агглютинации можно ставить как с целью качественного и количественного определения специфических антител в сыворотке крови больного, так и с целью определения видовой принадлежности выделенного возбудителя.

Реакцию агглютинации можно ставить как в развернутом варианте, позволяющем работать с сывороткой разведенной до диагностического титра, так и в варианте постановки ориентировочной реакции, позволяющем в принципе обнаружить специфические антитела или определить видовую принадлежность возбудителя.

При постановке развернутой реакции агглютинации, с целью выявления в сыворотке крови обследуемого специфических антител, исследуемую сыворотку берут в разведении 1:50 или 1:100. Это обусловлено тем, что в цельной или мало разведенной сыворотке могут находиться нормальные антитела в очень высокой концентрации, и тогда результаты реакции могут быть неточными. Исследуемым материалом при этом варианте постановки реакции является кровь больного. Кровь берут натощак или не ранее чем через 6 часов после еды (в противном случае в сыворотке крови могут быть капельки жира, делающие ее мутной и непригодной для исследования). Сыворотку крови больного обычно получают на второй неделе заболевания, набирая стерильно из локтевой вены 3 – 4 мл крови (к этому времени концентрируется максимальное количество специфических антител). В качестве известного антигена используется диагностикум, приготовленный из убитых, но не разрушенных микробных клеток конкретного вида с конкретной антигенной структурой.

При постановке развернутой реакции агглютинации с целью определения видовой, типовой принадлежности возбудителя, антигеном является живой возбудитель, выделенный из исследуемого материала. Известными являются антитела, содержащиеся в иммунной диагностической сыворотке.

Иммунную диагностическую сыворотку получают из крови вакцинированного кролика. Определив титр (максимальное разведение, в котором обнаруживаются антитела), диагностическую сыворотку разливают по ампулам с добавлением консерванта. Эту сыворотку и используют для идентификации по антигенной структуре выделенного возбудителя.

При постановке ориентировочной реакции агглютинации на предметном стекле используют сыворотки с большей концентрацией антител (в разведениях не более чем 1:10 или 1:20).

Пастеровской пипеткой наносят на стекло по одной капле физиологического раствора и сыворотки. Затем к каждой капле добавляют петлей небольшое количество микробов и тщательно размешивают до получения гомогенной взвеси. Через несколько минут при положительной реакции в капле с сывороткой появляется заметное скучиванье микробов (зернистость), в контрольной капле остается равномерное помутнение.

Ориентировочной реакцией агглютинации чаще всего пользуются для определения видовой принадлежности микробов, выделенных из исследуемого материал. Полученный результат позволяет ориентировочно ускорить постановку диагноза заболевания. Если реакция плохо видна невооруженным глазом, ее можно наблюдать под микроскопом. В этом случае ее называют микроагглютинацией.

Ориентировочная реакция агглютинации, которая ставится с каплей крови больного и известным антигеном, называется кроваво – капельной.

Реакция непрямой или пассивной гемагглютинации (РПГА)

Эта реакция по чувствительности превосходит реакцию агглютинации и ее используют при диагностике инфекций, вызванных бактериями, риккетсиями, простейшими и другими микроорганизмами.

РПГА позволяет обнаружить небольшую концентрацию антител.

В этой реакции участвуют таннизированные бараньи эритроциты или эритроциты человека с кровью I группы, сенсибилизированные антигенами или антителами.

Если в исследуемой сыворотке определяются антитела, то используются эритроциты, сенсибилизированные антигенами (эритроцитарный диагностикум).

В некоторых случаях, при необходимости определения различных антигенов в исследуемом материале, используют эритроциты, сенсибилизированные иммунными глобулинами.

Результаты РПГА учитывают по характеру осадка эритроцитов.

Положительным считают результат реакции, при котором эритроциты равномерно покрывают все дно пробирки (перевернутый зонтик).

При отрицательной реакции эритроциты в виде маленького диска (пуговка) располагаются в центре дна пробирки.

Реакция преципитации (РП)

В отличие от реакции агглютинации антигеном для реакции преципитации (преципитиногеном) служат растворимые соединения, величина частичек которых приближается к размерам молекул.

Это могут быть белки, комплексы белков с липидами и углеводами, микробные экстракты, различные лизаты или фильтраты культур микробов.

Антитела, обуславливающие преципитирующее свойство иммунной сыворотки, называются преципитинами, а продукт реакции в виде осадка – преципитатом.

Преципитирующие сыворотки получают путем искусственной иммунизации животного живыми или убитыми микробами, а также разнообразными лизатами и экстрактами микробных клеток.

Путем искусственной иммунизации можно получить преципитирующие сыворотки к любому чужеродному белку растительного и животного происхождения, также к гаптенам при иммунизации животного полноценным антигеном, содержащим данный гаптен.

Механизм реакции преципитации аналогичен механизму реакции агглютинации. Действие преципитирующих сывороток на антиген сходно с действием агглютинирующих. И в том, и в другом случае под влиянием иммунной сыворотки и электролитов наступает укрупнение взвешенных в жидкости частиц антигена (уменьшение степени дисперсности). Однако для реакции агглютинации антиген берется в виде гомогенной мутной микробной взвеси (суспензии), а для реакции преципитации – в виде прозрачного коллоидного раствора.

Реакция преципитации является высоко чувствительной и позволяет обнаруживать ничтожно малые количества антигена.

Реакция преципитации применяется в лабораторной практике для диагностики чумы, туляремии, сибирской язвы, менингита и других заболеваний, а также в судебно – медицинской экспертизе.

В санитарной практике с помощью этой реакции определяют фальсификацию пищевых продуктов.

Реакцию преципитации можно ставить не только в пробирках, но и в геле, а для тонких иммунологических исследований антигена применяется метод иммунофореза.

Реакция преципитации в агаровом геле, или метод диффузной преципитации, позволяет детально изучить состав сложных водо – растворимых антигенных смесей. Для постановки реакции используют гель (полужидкий или более плотный агар). Каждый компонент, входящий в состав антигена, диффундирует навстречу соответствующему антителу с разной скоростью. Поэтому комплексы различных антигенов и соответствующих антител располагаются в различных участках геля, где и образуют линии преципитации. Каждая из линий соответствует только одному комплексу антиген – антитело. Реакцию преципитации обычно ставят при комнатной температуре.

Широкое распространение при изучении антигенной структуры микробной клетки получил метод иммунофореза.

Комплекс антигенов помещают в луночку, находящуюся в центре агарового поля, залитого на пластину. Через агаровый гель пропускают электрический ток. Различные антигены, входящие в комплекс, перемещаются в результате действия тока в зависимости от их электрофоретической подвижности. После окончания электрофореза в траншею, расположенную по краю пластины, вносят специфическую иммунную сыворотку и помещают во влажную камеру. В местах образования комплекса антиген – антитело появляются линии преципитации.

Реакция нейтрализации экзотоксина антитоксином (РН)

Реакция основана на способности антитоксической сыворотки нейтрализовать действие экзотоксина. Она применяется для титрования антитоксических сывороток и определения экзотоксина.

При титровании сыворотки к разным разведениям антитоксической сыворотки прибавляется определенная доза соответствующего токсина. При полной нейтрализации антигена и отсутствия не израсходованных антител наступает инициальная флокуляция.

Реакцию флокуляции можно применять не только для титрования сыворотки (например, дифтерийной), но и для титрования токсина и анатоксина.

Реакция нейтрализации токсина антитоксином имеет большое практическое значение как метод определения активности антитоксических лечебных сывороток. Антигеном в этой реакции является истинный экзотоксин.

Сила антитоксической сыворотки определяется условными единицами АЕ.

1 АЕ дифтерийной антитоксической сыворотки - это то ее количество, которое нейтрализует 100 DLM дифтерийного экзотоксина. 1 АЕ ботулиновой сыворотки – ее количество нейтрализующее 1000 DLM ботулинового токсина.

Реакцию нейтрализации с целью определения видовой или типовой принадлежности экзотоксина (при диагностике столбняка, ботулизма, дифтерии и др.) можно проводить in vitro (по Рамону), а при определении токсигенности микробных клеток - в геле (по Оухтерлони).

Реакция лизиса (РЛ)

Одним из защитных свойств иммунной сыворотки является ее способность растворять микробы или клеточные элементы, поступающие в организм.

Специфические антитела, обуславливающие растворение (лизис) клеток, называются лизинами. В зависимости от характера антигена они могу быть бактериолизинами, цитолизинами, спирохетолизинами, гемолизинами и др.

Лизины проявляют свое действие только в присутствии дополнительного фактора – комплемента.

Комплемент, как фактор неспецифического гуморального иммунитета, обнаружен почти во всех жидкостях организма, кроме спинномозговой жидкости и жидкости передней камеры глаза. Довольно высокое и постоянное содержание комплемента отмечено в сыворотке крови человека и очень много его в сыворотке крови морской свинки. У остальных млекопитающих содержание комплемента в сыворотке крови различно.

Комплемент – это сложная система сывороточных протеинов. Он нестоек и разрушается при 55 градусах в течение 30 минут. При комнатной температуре комплемент разрушается в течение двух часов. Очень чувствителен к продолжительному встряхиванию, к действию кислот и ультрафиолетовых лучей. Однако, комплемент длительно (до шести месяцев) сохраняется в высушенном состоянии при низкой температуре.

Комплемент способствует лизису микробных клеток и эритроцитов.

Различают реакцию бактериолиза и гемолиза.

Суть реакции бактериолиза состоит в том, что при соединении специфической иммунной сыворотки с соответствующими ей гомологичными живыми микробными клетками в присутствии комплемента происходит лизис микробов.

Реакция гемолиза состоит в том, что при воздействии на эритроциты специфической, иммунной по отношению к ним сывороткой (гемолитической) в присутствии комплемента, наблюдается растворение эритроцитов, т.е. гемолиз.

Реакция гемолиза в лабораторной практике используется для определения тира комплемента, а также для учета результатов диагностических реакций связывания комплемента «Борде – Жангу» и «Вассермана».

Титр комплемента – это наименьшее его количество, которое обуславливает лизис эритроцитов в течение 30 минут в гемолитической системе в объеме 2,5мл. Реакция лизиса, как и все серологические реакции происходит в присутствии электролита.

Реакция связывания комплемента (РСК)

Эту реакцию применяют при лабораторных исследованиях для обнаружения антител в сыворотке крови при различных инфекциях, а также для идентификации возбудителя по антигенной структуре.

Реакция связывания комплемента относится к сложным серологическим реакциям и отличается высокой чувствительностью и специфичностью.

Особенностью этой реакции является то, что изменение антигена при его взаимодействии со специфическими антителами происходит только в присутствии комплемента. Комплемент адсорбируется только на комплексе «антитело – антиген». Комплекс «антитело – антиген» образуется только в том случае, если между антигеном и антителом, находящемся в сыворотке, имеется сродство.

Адсорбция комплемента на комплексе «антиген – антитело» может по - разному отразиться на судьбе антигена в зависимости от его особенностей.

Некоторые из антигенов подвергаются при этих условиях резким морфологическим изменениям, вплоть до растворения (гемолиз, феномен Исаева – Пфейфера, цитолитическое действие). Другие изменяют скорость передвижения (иммобилизация трепонем). Третьи погибают без резких деструктивных изменений (бактерицидное или цитотоксическое действие). Наконец, адсорбция комплемента может и не сопровождаться изменениями антигена, легко доступными для наблюдения (реакции Борде – Жангу, Вассермана).

По механизму РСК протекает в две фазы:
а) Первая фаза – это образование комплекса «антиген – антитело» и адсорбция на этом комплексе комплемента. Результат фазы визуально не видим.
б) Вторая фаза – это изменение антигена под влиянием специфических антител в присутствии комплемента. Результат фазы может быть видимым визуально или не видимым.

В случае, когда изменения антигена остаются недоступными для визуального наблюдения, приходится использовать вторую систему, выполняющую роль индикатора, позволяющую оценить состояние комплемента и сделать заключение о результате реакции.

Эта индикаторная система представлена компонентами реакции гемолиза, в составе которой находятся бараньи эритроциты и гемолитическая сыворотка, содержащая к эритроцитам специфические антитела (гемолизины), но не содержащая комплемент. Эта индикаторная система добавляется в пробирки через час после постановки основной РСК.

Если реакция связывания комплемента положительна, то образуется комплекс антитело – антиген», адсорбирующий на себе комплемент. Поскольку комплемент используется в количестве необходимом только для одной реакции, а лизис эритроцитов может произойти только при наличии комплемента, то при его адсорбции на комплексе «антиген – антитело», лизис эритроцитов в гемолитической (индикаторной) системе не произойдет. Если реакция связывания комплемента отрицательная, комплекс «антиген – антитело» не образуется, комплемент остается свободным, и при добавлении гемолитической системы наступает лизис эритроцитов.

Реакция гемагглютинации (РГА)

В лабораторной практике пользуются двумя различными по механизму действия реакциями гемагглютинации.

В одном случае реакция гемагглютинации относится к серологическим. В этой реакции эритроциты агглютинируются при взаимодействии с соответствующими антителами (гемагглютининами). Реакцию широко используют для определения группы крови.

В другом случае реакция гемагглютинации не является серологической.

В ней склеивание эритроцитов вызывают не антитела, а особые вещества (гемагглютинины), образуемые вирусами. Например, вирус гриппа агглютинирует куриные эритроциты, вирус полиомиелита – обезьяньи. Эта реакция позволяет судить о наличии того или иного вируса в исследуемом материале.

Учет результатов реакции осуществляется по расположению эритроцитов. При положительном результате эритроциты располагаются рыхло, выстилая дно пробирки в виде «перевернутого зонтика». При отрицательном результате эритроциты оседают на дно пробирки компактным осадком («пуговичка»).

Реакция торможения гемагглютинации (РТГА)

Это серологическая реакция, в которой специфические противовирусные антитела, взаимодействуя с вирусом (антигеном), нейтрализуют его и лишают способности агглютинировать эритроциты, т.е. тормозят реакцию гемагглютинации.

Высокая специфичность реакции торможения агглютинации позволяет с ее помощью определять вид, тип вирусов или выявлять специфические антитела в исследуемой сыворотке.

Реакция иммунофлюоресценции (РИФ)

Реакция основана на том, что иммунные сыворотки, к которым химическим путем присоединены флюорохромы, при взаимодействии с соответствующими антигенами, образуют специфический светящийся комплекс, видимый в люминесцентном микроскопе. Сыворотки, обработанные флюорохромами, называются люминесцирующими.

Метод высокочувствителен, прост, не требует выделения чистой культуры, т.к. микроорганизмы обнаруживются непосредственно в исследуемом материале. Результат можно получить через 30 минут после нанесения на препарат люминесцирующей сыворотки.

Реакцию иммунной флюоресценции применяют при ускоренной диагностике многих инфекций.

В лабораторной практике применяют два варианта реакции иммунофлюоресценции: прямой и непрямой.

Прямой метод – это когда антиген сразу обрабатывается иммунной флюоресцирующей сывороткой.

Непрямой метод иммунной флюоресценции заключатся в том, что изначально препарат обрабатывают обычной (не флюоресцирующей) иммунной диагностической сывороткой, специфической искомому антигену. Если в препарате имеется антиген специфический к данной диагностической сыворотке, то образуется комплекс «антиген – антитело», который увидеть нельзя. Если этот препарат дополнительно обработать лиминесцирующей сывороткой, содержащей специфические антитела к глобулинам сыворотки в комплексе «антиген – антитело», произойдет адсорбция люминесцирующих антител на глобулины диагностической сыворотки и как результат – в люминесцентный микроскоп можно увидеть светящиеся контуры микробной клетки.

Реакция иммобилизации (РИ)

Способность иммунной сыворотки вызывать иммобилизацию подвижных микроорганизмов связана со специфическими антителами, которые проявляют свое действие в присутствии комплемента. Иммобилизирующие антитела обнаружены при сифилисе, холере и некоторых других инфекционных заболеваниях.

Это послужило основанием для разработки реакции иммобилизации трепонем, которая по своей чувствительности и специфичности превосходит другие серологические реакции, используемые при лабораторной диагностике сифилиса.

Реакция нейтрализации вирусов (РНВ)

В сыворотке крови людей, иммунизированных или перенесших вирусное заболевание, обнаруживаются антитела, способные нейтрализовать инфекционные свойства вируса. Эти антитела выявляются при смешивании сыворотки с соответствующим вирусом и последующим введением этой смеси в организм восприимчивых лабораторных животных или заражением культуры клеток. На основании выживания животных или отсутствия цитопатического действия вируса судят о нейтрализующей способности антител.

Эта реакция широко используется в вирусологии для определения вида или типа вирус и титра нейтрализующих антител.

К современным методам диагностики инфекционных заболеваний следует отнести иммунофлюоресцентный метод обнаружения антигенов и антител, радиоимунный, иммуноферментный метод, метод иммуноблоттинга, обнаружение антигенов и антител при помощи моноклональных антител, метод обнаружения антигенов при помощи полимеразой цепной реакции (ПЦР – диагностика) и др.



Понравилась статья? Поделитесь ей
Наверх