Строение кости как органа. Классификация костей

1234Следующая ⇒

Скелет человека: функции, отделы

Скелет представляет совокупность костей, принадлежащих им хрящей и соединяющих кости связок.

Всего в теле человека более 200 костей. Вес скелета 7-10 кг, что составляет 1/8 веса человека.

В скелете человека различаются следующие отделы :

  • скелет головы (череп), скелет туловища — осевой скелет;
  • пояс верхних конечностей , пояс нижних конечностей — добавочный скелет.


Скелет человека спереди

Функции скелета :

  • Механические функции :
  1. опора и крепление мышц (скелет поддерживает все другие органы, придаёт телу определённую форму и положение в пространстве);
  2. защита — образование полостей (черепная коробка защищает головной мозг, грудная клетка предохраняет сердце и лёгкие, а таз — мочевой пузырь, прямую кишку и другие органы);
  3. движение — подвижное соединение костей (скелет вместе с мышцами составляет двигательный аппарат, кости в этом аппарате выполняют пассивную роль — они являются рычагами, которые перемещаются в результате сокращения мышц).
  • Биологические функции :
    1. минеральный обмен;
    2. кроветворение;
    3. депонирование крови.

    Классификация костей, особенности их строения. Кость как орган

    Кость — структурно-функциональная единица скелета и самостоятельный орган. Каждая кость занимает точное положение в теле, имеет определённую форму и строение, выполняет свойственную ей функцию. В образовании кости принимают участие все виды тканей. Конечно, главное место занимает костная ткань. Хрящ покрывает только суставные поверхности кости, снаружи кость покрыта надкостницей, внутри расположен костный мозг. Кость содержит жировую ткань, кровеносные и лимфатические сосуды, нервы. Костная ткань обладает высокими механическими свойствами, её прочность можно сравнить с прочностью металла. Относительная плотность костной ткани около 2,0. Живая кость содержит 50% воды, 12,5% органических веществ белковой природы (оссеин и оссеомукоид), 21,8% неорганических минеральных веществ (главным образом фосфат кальция) и 15,7% жира.

    В высушенной кости 2/3 составляют неорганические вещества, от которых зависит твёрдость кости, и 1/3 — органические вещества, обусловливающие её упругость. Содержание в кости минеральных (неорганических) веществ с возрастом постепенно увеличивается, в результате чего кости пожилых и старых людей становятся более хрупкими. По этой причине даже незначительные травмы у стариков сопровождаются переломами костей. Гибкость и упругость костей у детей зависят от относительно большего содержания в них органических веществ.

    Остеопороз — заболевание, связанное с повреждением (истончением) костной ткани, ведущее к переломам и деформации костей. Причина — не усвоение кальция.

    Структурной функциональной единицей кости является остеон . Обычно остеон состоит из 5-20 костных пластинок. Диаметр остеона 0,3 — 0,4 мм.

    Если костные пластинки плотно прилегают друг к другу, то получается плотное (компактное) костное вещество. Если костные перекладины расположены рыхло, то образуется губчатое костное вещество, в котором находится красный костный мозг.

    Снаружи кость покрыта надкостницей. В ней находятся сосуды и нервы.

    За счёт надкостницы кость растёт в толщину. За счёт эпифизов кость растёт в длину.

    Внутри кости находится полость, заполненная жёлтым костным мозгом.


    Внутреннее строение кости

    Классификация костей по форме:

    1. Трубчатые кости — имеют общий план строения, в них различают тело (диафиз) и два конца (эпифизы); цилиндрической или трёхгранной формы; длина преобладает над шириной; снаружи трубчатая кость покрыта соединительнотканным слоем (надкостницей):
    • длинные (бедренная, плечевая);
    • короткие (фаланги пальцев).
  • Губчатые кости — образованы преимущественно губчатой тканью, окружённой тонким слоем твёрдого вещества; сочетают прочность и компактность с ограниченной подвижностью; ширина губчатых костей приблизительно равна их длине:
    • длинные (грудина);
    • короткие (позвонки, крестец)
    • сесамовидные кости — расположены в толще сухожилий и обычно лежат на поверхности других костей (надколенник).
  • Плоские кости — образованы двумя хорошо развитыми компактными наружными пластинками, между которыми располагается губчатое вещество:
    • кости черепа (крыша черепа);
    • плоские (тазовая кость, лопатки, кости поясов верхних и нижних конечностей).
  • Смешанные кости — имеют сложную форму и состоят из частей, различных по функциям, форме и происхождению; из-за сложной структуры смешанные кости нельзя отнести к другим типам костей: трубчатым, губчатым, плоским (грудной позвонок, имеет тело, дугу и отростки; кости основания черепа состоят из тела и чешуи).
  • 1234Следующая ⇒

    Похожая информация:

    Поиск на сайте:

    Лекция: Классификация костей по форме и внутреннему строению. Классификация костей.

    В скелете различают следующие части: скелет туловища (позвонки, ребра, грудина), скелет головы (кости черепа и лица), кости поясов конечностей - верхней (лопатка, ключица) и нижней (тазовая) и кости свободных конечностей - верхней (плечо, кости предплечья и кисти) и нижней (бедро, кости голени и стопы).

    Число отдельных костей, входящих в состав скелета взрослого человека, больше 200, из них 36 - 40 расположены по средней линии тела и непарные, остальные - парные кости.
    По внешней форме различают кости длинные, короткие, плоские и смешанные.

    Однако такое установленное еще во времена Галена деление только по одному признаку (внешняя форма) оказывается односторонним и служит примером формализма старой описательной анатомии, вследствие чего совершенно разнородные по своему строению, функции и происхождению кости попадают в одну группу.

    Так, к группе плоских костей относят и теменную кость, которая является типичной покровной костью, окостеневающей эндесмально, и лопатку, которая служит для опоры и движения, окостеневает на почве хряща и построена из обычного губчатого вещества.
    Патологические процессы также протекают совершенно различно в фалангах и костях запястья, хотя и те и другие относятся к коротким костям, или в бедре и ребре, зачисленных в одну группу длинных костей.

    Поэтому правильнее различать кости на основании 3 принципов, на которых должна быть построена всякая анатомическая классификация: формы (строения), функции и развития.
    С этой точки зрения можно наметить следующую классификацию костей (М. Г. Привес):
    I. Трубчатые кости. Они построены из губчатого и компактного вещества, образующего трубку с костномозговой полостью; выполняют все 3 функции скелета (опора, защита и движение).

    Из них длинные трубчатые кости (плечо и кости предплечья, бедро и кости голени) являются стойками и длинными рычагами движения и, кроме диафиза, имеют эндо- хондральные очаги окостенения в обоих эпифизах (биэпифизарные кости); короткие трубчатые кости (кости пястья, плюсны, фаланги) представляют короткие рычаги движения; из эпифизов эндохондральный очаг окостенения имеется только в одном (истинном) эпифизе (моноэпифизарные кости).
    П.Губчатые кости. Построены преимущественно из губчатого вещества, покрытого тонким слоем компактного.

    Среди них различают длинные губчатые кости (ребра и грудина) и короткие (позвонки, кости запястья, предплюсны). К губчатым костям относятся сесамовидные кости, т. е. похожие на сесамовые зерна растения кунжут, откуда и происходит их название (надколенник, гороховидная кость, сесамовидные кости пальцев руки и ноги); функция их - вспомогательные приспособления для работы мышц; развитие - эндохондральное в толще сухожилий. Сесамовидные кости располагаются около суставов, участвуя в их образовании и способствуя движениям в них, но с костями скелета непосредственно не связаны.
    III.

    Плоские кости:
    а) плоские кости черепа (лобная и теменные) выполняют преимуще ственно защитную функцию. Они построены из 2 тонких пластинок компакт ного вещества, между которыми находится д и п л о э, diploe, - губчатое вещество, содержащее каналы для вен. Эти кости развиваются на основе соединительной ткани (покровные кости);
    б) плоские кости поясов (лопатка, тазовые кости) выполняют функции опоры и защиты, построены преимущественно из губчатого вещества; развиваются на почве хрящевой ткани.

    Смешанные кости (кости основания черепа). К ним относятся кости, сливающиеся из нескольких частей, имеющих разные функцию, строение и развитие. К смешанным костям можно отнести и ключицу, развивающуюся частью эндесмально, частью эндохондрально.

    7)строение костного вещества.
    По микроскопическому строению костное вещество представляет особый вид соединительной ткани, костную ткань, характерные признаки которой: твёрдое, пропитанное минеральными солями волокнистое межклеточное вещество и звездчатые, снабжённые многочисленными отростками, клетки.

    Основу кости составляют коллагеновые волокна со спаивающим их веществом, которые пропитаны минеральными солями и слагаются в пластинки, состоящие из слоев продольных и поперечных волокон; кроме того, в костном веществе находятся ещё упругие волокна.

    Пластинки эти в плотном костном веществе частью располагаются концентрическими слоями вокруг проходящих в костном веществе длинных разветвляющихся каналов, частью лежат между этими системами, частью обхватывают целые группы их или тянутся вдоль поверхности кости. Гаверсов канал в сочетании с окружающими его концентрическими костными пластинками считается структурной единицей компактного вещества кости - остеоном.

    Параллельно поверхности этих пластинок в них расположены слои маленьких звездообразных пустот, продолжающихся в многочисленные тонкие канальцы - это так называемые «костные тельца», в которых находятся костные клетки, дающие отростки в канальцы. Канальцы костных телец соединяются между собой и с полостью Гаверсовых каналов, внутренними полостями и надкостницей, и таким образом вся костная ткань оказывается пронизанной непрерывной системой наполненных клетками и их отростками полостей и канальцев, по которым и проникают необходимые для жизни кости питательные вещества.

    По Гаверсовым каналам проходят тонкие кровеносные сосуды; стенка Гаверсова канала и наружная поверхность кровеносных сосудов одеты тонким слоем эндотелия, а промежутки между ними служат лимфатическими путями кости.

    Губчатое костное вещество не имеет Гаверсовых каналов.

    9) методы изучения костной системы.
    Кости скелета можно изучать у живого человека методом рентгеновского исследования. Наличие в костях солей кальция делает кости менее «прозрачными» для лучей Рентгена, чем окружающие их мягкие ткани. Вследствие неодинакового строения костей, присутствия в них более или менее толстого слоя компактного коркового вещества, а кнутри от него губчатого вещества можно увидеть и различить кости на рентгенограммах.
    Рентгенологическое (рентгеновское) исследование основано на свойстве рентгеновских лучей в различной степени проникать через ткани организма.

    Степень поглощения рентгеновского излучения зависит от толщины, плотности и физико-химического состава органов и тканей человека, поэтому более плотные органы и ткани (кости, сердце, печень, крупные сосуды) визуализируются на экране (рентгеновском флюоресцирующем или телевизионном) как тени, а лёгочная ткань вследствие большого количества воздуха представлена областью яркого свечения.

    Различают следующие основные рентгенологические методы исследования.

    1. Рентгеноскопия (греч.

    skopeo - рассматривать, наблюдать) - рентгенологическое исследование в режиме реального времени. На экране появляется динамическое изображение, позволяющее изучать двигательную функцию органов (например, пульсацию сосудов, моторику ЖКТ); также видна структура органов.

    2. Рентгенография (греч. grapho - писать) - рентгенологическое исследование с регистрацией неподвижного изображения на специальной рентгеновской плёнке или фотобумаге.

    При цифровой рентгенографии изображение фиксируется в памяти компьютера. Применяют пять видов рентгенографии.

    Полноформатная рентгенография.

    Флюорография (малоформатная рентгенография) - рентгенография с уменьшенным размером изображения, получаемого на флюоресцирующем экране (лат.

    fluor - течение, поток); её применяют при профилактических исследованиях органов дыхания.

    Обзорная рентгенография - изображение целой анатомической области.

    Прицельная рентгенография - изображение ограниченного участка исследуемого органа.

    Вильгельм Конрад Рентген (1845-1923) - немецкий физик-экспериментатор, основоположник рентгенологии, в 1895 г. открыл Х-лучи (рентгеновские лучи).

    Серийная рентгенография - последовательное получение нескольких рентгенограмм для изучения динамики изучаемого процесса.

    Томография (греч. tomos - отрезок, пласт, слой) - метод послойной визуализации, обеспечивающий изображение слоя тканей заданной толщины с использованием рентгеновской трубки и кассеты с плёнкой (рентгеновская томография) или же с подключением специальных счётных камер, от которых электрические сигналы подаются на компьютер (компьютерная томография).

    Контрастная рентгеноскопия (или рентгенография) - рентгенологический метод исследования, основанный на введении в полые органы (бронхи, желудок, почечные лоханки и мочеточники и др.) или сосуды (ангиография) специальных (рентгеноконтрастных) веществ, задержи-вающих рентгеновское излучение, в результате чего на экране (фотоплёнке) получают чёткое изо-бражение изучаемых органов.

    10) строение кости как органа, типичные костные образования.
    Кость, os, ossis, как орган живого организма состоит из нескольких тканей, главнейшей из которых является костная.

    ость (os) - это орган, являющийся компонентом системы органов опоры и движения, имеющий типичную форму и строение, характерную архитектонику сосудов и нервов, построенный преимущественно из костной ткани, покрытый снаружи надкостницей (periosteum) и содержащий внутри костный мозг (medulla osseum).

    Каждая кость имеет определенную форму, величину и положение в теле человека.

    На формообразование костей существенное влияние оказывают условия, в которых кости развиваются, и функциональные нагрузки, которые кости испытывают в процессе жизнедеятельности организма. Каждой кости свойственно определенное число источников кровоснабжения (артерий), наличие определенных мест их локализации и характерная внутриорганная архитектоника сосудов.

    Указанные особенности распространяются и на нервы, иннервирующие данную кость.

    В состав каждой кости входят несколько тканей, находящихся в определенных соотношениях, но, безусловно, основной является пластинчатая костная ткань. Рассмотрим ее строение на примере диафиза длинной трубчатой кости.

    Основную часть диафиза трубчатой кости, расположенную между наружными и внутренними окружающими пластинками, составляют остеоны и вставочные пластинки (остаточные остеоны).

    Остеон, или гаверсова система, является структурно-функциональной единицей кости. Остеоны можно рассмотреть на шлифах или гистологических препаратах.

    Внутреннее строение кости: 1 - костная ткань; 2 - остеон (реконструкция); 3 - продольный срез остеона

    Остеон представлен концентрически расположенными костными пластинками (гаверсовыми), которые в виде цилиндров разного диаметра, вложенных друг в друга, окружают гаверсов канал.

    В последнем проходят кровеносные сосуды и нервы. Остеоны большей частью располагаются параллельно длиннику кости, многократно анастомозируя между собой.

    Количество остеонов индивидуально для каждой кости, у бедренной кости оно составляет 1,8 на 1 мм2. При этом на долю гаверсова канала приходится 0,2-0,3 мм2. Между остеонами располагаются вставочные, или промежуточные, пластинки, которые идут во всех направлениях.

    Вставочные пластинки представляют собой оставшиеся части подвергшихся разрушению старых остеонов. В костях постоянно происходят процессы новообразования и разрушения остеонов.

    Снаружи кость окружают несколько слоев генеральных, или общих, пластинок, которые располагаются непосредственно под надкостницей (периостом).

    Через них проходят прободающие каналы (фолькмановские), которые содержат кровеносные сосуды того же названия. На границе с костномозговой полостью в трубчатых костях находится слой внутренних окружающих пластинок. Они пронизаны многочисленными каналами, расширяющимися в ячейки. Костномозговая полость выстлана эндостом, который представляет собой тонкий соединительнотканный слой, включающий уплощенные неактивные остеогенные клетки.

    В костных пластинках, имеющих форму цилиндров, оссеиновые фибриллы плотно и параллельно прилежат друг к другу.

    Между концентрически лежащими костными пластинками остеонов находятся остеоциты. Отростки костных клеток, распространяясь по канальцам, проходят в направлении к отросткам соседних остеоцитов, вступают в межклеточные соединения, формируя пространственно ориентированную лакунарно-канальцевую систему, участвующую в метаболических процессах.

    В составе остеона насчитывается до 20 и более концентрических костных пластинок.

    В канале остеона проходят 1-2 сосуда микроциркуляторного русла, безмиелиновые нервные волокна, лимфатические капилляры, сопровождаемые прослойками рыхлой соединительной ткани, содержащей остеогенные элементы, в том числе периваскулярные клетки и остеобласты.

    Каналы остеонов соединены между собой, с периостом и костномозговой полостью за счет прободающих каналов, что способствует анастомозированию сосудов кости в целом.

    Снаружи кость покрыта надкостницей, образованной волокнистой соединительной тканью. В ней различают наружный (волокнистый) слой и внутренний (клеточный).

    В последнем локализуются камбиальные клетки-предшественники (преостеобласты). Основные функции периоста - защитная, трофическая (за счет проходящих здесь кровеносных сосудов) и участие в регенерации (благодаря наличию камбиальных клеток).

    Надкостница покрывает кость снаружи, за исключением тех мест, где располагается суставной хрящ и прикрепляются сухожилия мышц или связки (на суставных поверхностях, буграх и бугристостях). Надкостница отграничивает кость от окружающих тканей.

    Она представляет собой тонкую прочную пленку, состоящую из плотной соединительной ткани, в которой располагаются кровеносные и лимфатические сосуды и нервы. Последние из надкостницы проникают в вещество кости.

    Внешнее строение плечевой кости: 1 - проксимальный (верхний) эпифиз; 2 - диафиз (тело); 3 - дистальный (нижний) эпифиз; 4 - надкостница

    Надкостница играет большую роль в развитии (росте в толщину) и питании кости.

    Ее внутренний остеогенный слой является местом образования костной ткани. Надкостница богато иннервирована, поэтому отличается высокой чувствительностью. Кость, лишенная надкостницы, становится нежизнеспособной, омертвевает.

    При оперативных вмешательствах на костях по поводу переломов надкостницу необходимо сохранять.

    Практически у всех костей (за исключением большинства костей черепа) имеются суставные поверхности для сочленения с другими костями.

    Суставные поверхности покрыты не надкостницей, а суставным хрящом (cartilage articularis). Суставной хрящ по своему строению чаще является гиалиновым и реже - фиброзным.

    Внутри большинства костей в ячейках между пластинками губчатого вещества или в костномозговой полости (cavitas medullaris) находится костный мозг.

    Он бывает красный и желтый. У плодов и новорожденных в костях содержится только красный (кроветворный) костный мозг. Он представляет собой однородную массу красного цвета, богатую кровеносными сосудами, форменными элементами крови и ретикулярной тканью.

    В красном костном мозге содержатся также костные клетки, остеоциты. Общее количество красного костного мозга составляет около 1500 см3.

    У взрослого человека костный мозг частично заменяется желтым, который в основном представлен жировыми клетками. Замене подлежит только костный мозг, расположенный в пределах костномозговой полости. Следует отметить, что изнутри костномозговая полость выстлана специальной оболочкой, получившей название эндоста (endosteum).

    1. Длинные трубчатые (os бедра, голени, плеча, предплечья).

    2. Короткие трубчатые (os пястья, плюсны).

    3. Короткие губчатые (тела позвонков).

    4. Губчатые (грудина).

    5. Плоские (лопатка).

    6. Смешанные (os основания черепа, позвонки — тела губчатые, а отростки плоские).

    7. Воздухоносные (верхняя челюсть, решетчатая, клиновидная).

    Строение костей.

    Кость живого человека представляет собой сложный орган, занимает определенное положение в теле, имеет свою форму и строение, выполняет свойственную ей функцию.

    Кость состоит из тканей:

    Костная ткань (занимает главное место).

    2. Хрящевая (покрывает только суставные поверхности кости).

    3. Жировая (желтый костный мозг).

    Ретикулярная (красный костный мозг)

    Снаружи кость покрыта надкостницей.

    Надкостница (или периост) – тонкая двухслойная соединительнотканная пластинка.

    Внутренний слой состоит из рыхлой соединительной ткани, в нем находятся остеобласты .

    Они участвуют в росте кости в толщину и восстановлении её целостности после переломов.

    Наружный слой составлен плотными фиброзными волокнами . Надкостница богата кровеносными сосудами и нервами, которые по тонким костным канальцам проникают в глубь кости, кровоснабжая и иннервируя её.

    Внутри кости расположен костный мозг .

    Костный мозг бывает двух видов:

    Красный костный мозг – важный орган кроветворения и костеобразования.

    Насыщен кровеносными сосудами кровяными элементами. Он образован ретикулярной тканью, в которой находятся кроветворные элементы (стволовые клетки), остеокласты (разрушители), остеобласты.

    Во внутриутробном периоде и у новорожденных все кости содержат красный костный мозг.

    У взрослого человека он содержится только в ячейках губчатого вещества плоских костей (грудина, кости черепа, подвздошные кости), в губчатых (коротких костях), эпифизах трубчатых костей.

    По мере созревания клетки крови поступают в кровеносное русло и разносятся по всему организму.

    Желтый костный мозг представлен преимущественно жировыми клетками и перерожденными клетками ретикулярной ткани.

    Липоциты придают кости желтый цвет. Желтый костный мозг находится в полости диафизов трубчатых костей.

    Из костной ткани образуются системы костных пластинок.

    Если костные пластинки плотно прилегают друг к другу, то получается плотное или компактное костное вещество.

    Если костные перекладины расположены рыхло, образуя ячейки, то образуется губчатое костное вещество, которое состоит из сети тонких анастомозированных костных элементов – трабекул .

    Костные перекладины располагаются не беспорядочно, а строго закономерно по линиям сил сжатия и растяжения.

    Остеон – это структурная единица кости.

    Остеоны состоят из 2-20 цилиндрических пластинок, вставленных одна в другую, внутри которых проходит (гаверсов) канал.

    Через него проходят лимфатический сосуд, артерия и вена, которые разветвляются до капилляров и подходят к лакунам гаверсовой системы. Они обеспечивают поступление и отток питательных веществ, продуктов метаболизма, CO2 и О2.

    На наружной и внутренней поверхностях кости, костные пластинки не образуют концентрические цилиндры, а располагаются вокруг них.

    Эти области пронизаны каналами Фолькманна, через которые проходят кровеносные сосуды, которые соединяются с сосудами гаверсовых каналов.

    Живая кость содержит 50% воды, 12,5% органических веществ белковой природы (оссеин и оссеомукоид), 21,8% неорганических минеральных веществ (главным образом фосфат кальция) и 15,7% жира.

    Органические вещества обуславливают упругость кости, а неорганические – твердость .

    Трубчатые кости состоят из тела (диафиза) и двух концов (эпифизов). Эпифизы бывают проксимальный и дистальный.

    На границе между диафизом и эпифизом располагается метаэпифизарный хрящ , благодаря которому кость растет в длину.

    Полное замещение этого хряща костью происходит у женщин к 18-20 годам, а у мужчин к 23-25 годам. С этого времени рост скелета, а значит и человека прекращается.

    Эпифизы построены из губчатого костного вещества, в ячейках которого находится красный костный мозг. Снаружи эпифизы покрыты суставным гиалиновым хрящем .

    Диафиз состоит из компактного костного вещества .

    Внутри диафиза находится костномозговая полость , в ней лежит желтый костный мозг. Снаружи диафиз покрыт надкостницей . Надкостница диафиза постепенно переходит в надхрящницу эпифизов.

    Губчатая кость состоит их 2-х компактных костных пластинок, между которыми проходит слой губчатого вещества.

    Красный костный мозг располагается в губчатых ячейках.

    Кости соединяются в скелет (skeletos) – от греческого, означает высушенный.

    Читайте также:

    По форме, функции, строению и развитию кости делятся на три группы.

    Кости человека различаются по форме и размерам, занимают определенное место в организме. Существуют следующие виды костей: трубчатые, губчатые, плоские (широкие), смешанные и воздухоносные.

    Трубчатые кости выполняют функцию рычагов и формируют скелет свободной части конечностей, делятся на длинные (плечевая, бедренные кости, кости предплечья и голени) и короткие (пястные и плюсневые кости, фаланги пальцев).

    В длинных трубчатых костях есть расширенные концы (эпифизы) и средняя часть (диафиз).

    Участок между эпифизом и диафизом называется метафизом . Эпифизы, костей полностью или частично покрыты гиалиновым хрящом и участвуют в образовании суставов.

    Губчатые (короткие) кости располагаются в тех участках скелета, где прочность костей сочетается с подвижностью (кости запястья, предплюсна, позвонки, сесамовидные кости).

    Плоские (широкие) кости участвуют в образовании крыши черепа, грудной и тазовой полостей, выполняют защитную функцию , имеют большую поверхность для прикрепления мышц.

    Смешанные кости имеют сложное строение и различную форму.

    К этой группе костей относятся позвонки, тела которых являются губчатыми, а отростки и дуги - плоскими.

    Воздухоносные кости содержат в теле полость с воздухом, выстланную слизистой оболочкой.

    К ним относятся верхняя челюсть, лобная, клиновидная и решетчатая кости черепа.

    ЕЩЕ ВАРИАНТ!!!

    1. По местоположению: черепные кости; кости туловища; кости конечностей.
    2. По развитию выделяют следующие виды костей: первичные (появляются из соединительной ткани); вторичные (образуются из хряща); смешанные.
    3. Различают следующие виды костей человека по строению: трубчатые; губчатые; плоские; смешанные.

      Таким образом, науке известны различные виды костей. Таблица дает возможность более наглядно представить данную классификацию.

    3.

    Виды костей и их соединения

    Скелет человека содержит более 200 костей.
    Все кости скелета по строению, происхождению ивыполняемым функциям делят на четыре вида:Трубчатые (плечевая, локтевая, лучевая, бедренная, большая берцовая, малоберцовая) - это длинные кости в форме трубки, имеющие внутри канал с жёлтым костный мозгом.

    Обеспечивают быстрые разнообразные движения конечностей.
    Губчатые (длинные: ребра, грудина; короткие: кости запястья, предплюсны) - кости, преимущественно состоящие из губчатого вещества, покрытого тонким слоем компактного вещества. Содержат красный костный мозг, обеспечивающий функцию кроветворения.
    Плоские (лопатки, кости черепа) - кости, ширина которых преобладает над толщиной для защиты внутренних органов.

    Состоят из пластинок компактного вещества и тонкого слоя губчатого вещества.
    Смешанные - состоят из нескольких частей, имеющих разное строение, происхождение и функции (тело позвонка является губчатой костью, а его отростки - плоскими костями).

    Различные виды соединения костей обеспечивают функции частей скелета.
    Неподвижное (непрерывное) соединение представляет собой срастание или скрепление соединительной тканью для выполнения защитной функции (соединение костей крыши черепа для защиты головного мозга).
    Полуподвижное соединение через упругие хрящевые прокладки образуют кости, выполняющие и защитную и двигательную функции (соединения позвонков межпозвоночными хрящевыми дисками, ребер с грудиной и грудными позвонками)
    Подвижное (прерывное) соединение благодаря суставам имеют кости, обеспечивающие движение организма.


    Разные суставы обеспечивают различные направления движений.


    суставных поверхностей сочленяющихся костей;суставной (синовиальной) жидкости.
    Суставные поверхности соответствуют друг другу по форме и покрытыми гиалиновым хрящом.

    Суставная сумка образует герметичную полость с синовиальной жидкостью. Это способствует скольжению и защищает кость от стирания.
    Иллюстрации:
    http://www.ebio.ru/che04.html

    Что изучает артрология. Раздел анатомии, посвященный учению о соединении костей, называется артрологией (от греч. arthron — «сустав»). Соедине-ния костей объединяют кости скелета в единое целое, удерживая их друг возле друга и обеспечивая им большую или меньшую подвижность. Соединения костей имеют различное строение и обладают такими физическими свойствами, как прочность, упругость и подвижность, что связано с выполняемой ими функцией.

    КЛАССИФИКАЦИЯ СОЕДИНЕНИЙ КОСТЕЙ. Хотя соединения костей сильно различаются по структуре и функциям, они могут быть разделены на три вида:
    1.

    Непрерывные соединения (синартрозы) характеризуются тем, что кости соединяются с помощью непрерывного слоя соединительной ткани (плотная соединительная, хрящевая или костная). Щель или полость между соединяющимися поверхностями отсутствует.

    2. Полупрерывные соединения (гемиартрозы), или симфизы — это переходная форма от непрерывных соединений к пре-рывным.

    Они характеризуются наличием в хрящевой прослойке, находящейся между соединяющимися поверхностями, небольшой щели, заполненной жидкостью.

    Для таких соединений характерна небольшая подвижность.

    3. Прерывные соединения (диартрозы), или суставы характеризуются тем, что между соединяющимися поверхностями имеется щель и кости могут смещаться друг относительно друга.

    Такие соединения отличаются значительной подвижностью.

    Непрерывные соединения (синартрозы) . Непрерывные соединения имеют большую упругость, прочность и, как правило, ограниченную подвижность.

    В зависимости от вида соединительной ткани, расположенной между сочленяющимися поверхностями, выделяют три вида непрерывных соединений:
    Фиброзные соединения, или синдесмозы, являются прочными соединениями костей при помощи плотной волокнистой соединительной ткани, которая срастается с надкостницей соединяющихся костей и переходит в нее без четкой границы.

    К синдесмозам относят: связки, мембраны, швы и вколачивание (рис. 63).

    Связки служат в основном для укрепления соединений костей, однако могут ограничивать движения в них. Построены связки из плотной соединительной ткани, богатой коллагеновыми волокнами.

    Однако встречаются связки, которые содержат значительное количество эластических волокон (например, желтые связки, расположенные между дугами позвонков).

    Мембраны (межкостные перепонки) на значительном протяжении соединяют расположенные по соседству кости, например, натянуты между диафизами костей предплечья и голени и закрывают некоторые костные отверстия, например, запирательное отверстие тазовой кости.

    Нередко межкостные перепонки служат местом начала мышцы.

    Швы — разновидность фиброзного соединения, в котором между краями соединяющихся костей имеется узкая соединительнотканная прослойка. Соединения костей швами встречается только в черепе. В зависимости от конфигурации краев выделяют:
    — зубчатые швы (в крыше черепа);
    — чешуйчатый шов (между чешуей височной кости и теменной костью);
    — плоские швы (в лицевом черепе).

    Вколачивание — зубо-альвеолярное соединение, в котором между корнем зуба и зубной альвеолой находится узкая прослойка соединительной ткани - пародонт.

    Хрящевые соединения, или синхондрозы, представляют собой соединения костей с помощью хрящевой ткани (рис.

    64). Такой тип соединения характеризуется большой прочностью, малой подвижностью и упругостью вследствие эластических свойств хряща.

    Синхондрозы бывают постоянными и временными :
    1.

    Постоянный синхондроз — это такой- тип соединения, при котором хрящ между соединяющимися костями существует в течение всей жизни (например, между пирамидой височной кости и затылочной костью).
    2.

    Временный синхондроз наблюдается в тех случаях, когда хрящевая прослойка между костями сохраняется до определенного возраста (например, между костями таза), в дальнейшем хрящ замещается костной тканью.

    Костные соединения, или синостозы, являются соединениями костей при помощи костной ткани.

    Синостозы образуются в результате замещения костной тканью других видов соединений костей: синдесмозов (например, лобный синдесмоз), синхондрозов (например, клиновидно-затылочный синхондроз) и симфизов (нижнечелюстной симфиз).

    Полупрерывные соединения (симфизы) . К полупрерывным соединениям, или симфизам, относятся фиброзные или хрящевые соединения, в толще которых имеется небольших размеров полость в виде узкой щели (рис.

    65), заполненная синовиальной жидкостью. Такое соединение снаружи не покрыто капсулой, а внутренняя по-верхность щели не выстлана синовиальной оболочкой.

    В этих соединениях возможны небольшие смещения сочленяющихся костей друг относительно друга. Симфизы встречаются в грудине — симфиз рукоятки грудины, в позвоночном столбе — межпозвоночные симфизы и в тазу — лобковый симфиз.

    Лесгафту, образование того или иного сочленения обусловлено и функцией, возлагаемой на данный отдел скелета. В звеньях скелета, где необходима подвижность, формируются диартрозы (на конечностях); где необходима защита, формируются синартрозы (соединение костей черепа); в местах, испытывающих опорную нагрузку, образуются непрерывные соединения, или малоподвижные диартрозы (сочленения костей таза).

    Прерывные соединения (суставы). Прерывные соединения, или суставы, являются наиболее совершенными видами соединения костей.

    Они отличаются большой подвижностью, разнообразием движений.

    Обязательные элементы сустава (рис. 66):


    1. Сустае поверхности . В образовании сустава участвуют как минимум две суставные поверхности. В большинстве случаев они соответствуют друг другу, т.е.

    конгруэнтны. Если одна суставная поверхность выпуклая (головка), то другая — вогнутая (суставная впадина). В ряде случаев эти поверхности не соответствуют друг другу либо по форме, либо по величине — инконгруэнтны. Суставные поверхности покрыты, как правило, гиалиновым хрящом. Исключения составляют суставные поверхности в грудино-ключичном и височно-нижнечелюстном суставах — они покрыты волокнистым хрящом.

    Суставные хрящи сглаживают неровности суставных поверхностей, а также амортизируют толчки при движении. Чем большую нагрузку испытывает сустав под действием силы тяжести, тем больше толщина суставных хрящей.

    2. Суставная капсула прикрепляется к сочленяющимся костям вблизи краев суставных поверхностей. Она прочно срастается с надкостницей, образуя замкнутую суставную полость.

    Суставная капсула состоит из двух слоев. Наружный слой образует фиброзная мембрана, построенная из плотной волокнистой соединительной ткани.

    Местами она образует утолщения — связки, которые могут располагаться вне капсулы — внекапсулярные связки и в толще капсулы — внутрикапсулярные связки.

    Внекапсулярные связки являются частью капсулы, составляя вместе с ней одно неразрывное целое (например, клювовидно-плечевая связка). Иногда встречаются более или менее обособленные связки, например, коллатеральная малоберцовая связка коленного сустава.

    Внутрикапсулярные связки лежат в полости сустава, направляясь от одной кости к другой.

    Они состоят из фиброзной ткани и покрыты синовиальной оболочкой (например, связка головки бедра). Связки, развиваясь в определенных местах капсулы, повышают в зависимости от характера и амплитуды движений прочность сустава, играя роль тормозов.

    Внутренний слой образует синовиальная мембрана, построенная из рыхлой волокнистой соединительной ткани.

    Она выстилает фиброзную мембрану изнутри и продолжается на поверхность кости, не покрытой суставным хрящом. Синовиальная мембрана имеет небольшие выросты — синовиальные ворсинки, которые очень богаты кровеносными сосудами, выделяющими синовиальную жидкость.

    3. Суставная полость — щелевидное пространство между покрытыми хрящом суставными поверхностями. Она ограничена синовиальной мембраной суставной капсулы и содержит синовиальную жидкость.

    Внутри суставной полости отрицательное атмосферное давление, что препятствует расхождению суставных поверхностей.

    4. Синовиальная жидкость выделяется синовиальной мембраной капсулы. Она представляет собой тягучую прозрачную жидкость, которая смазывает покрытые хрящом суставные поверхности костей и уменьшает их трение друг о друга.

    Вспомогательные элементы сустава (рис.

    67):

    1. Суставные диски и мениски — это хрящевые пластинки различной формы, располагающиеся между не полностью соответствующими друг другу (инконгруэнтными) суставными поверхностями.

    Диски и мениски способны смещаться при движениях. Они сглаживают сочленяющиеся поверхности, делают их конгруэнтными, амортизируют сотрясения и толчки при движении. Диски имеются в грудино-ключичном и в височно-нижнечелюстном суставах, а мениски — в коленном суставе.

    2. Суставные губы располагаются по краю вогнутой суставной поверхности, углубляя и дополняя ее. Своим основанием они прикреплены к краю суставной поверхности, а внутренней вогнутой поверхностью обращены в полость сустава.

    Суставные губы увеличивают конгруэнтность суставов и способствуют более равномерному давлению одной кости на другую. Суставные губы имеются в плечевом и в тазобедренном суставах.

    3. Синовиальные складки и сумки. В местах, где сочленяющие поверхности инконгруэнтны, синовиальная мембрана обычно образует синовиальные складки (например, в коленном суставе).

    В утонченных местах суставной капсулы синовиальная оболочка образует мешкообразные выпячивания или вывороты — синовиальные сумки, которые располагаются вокруг сухожилий или под мышцами, лежащими вблизи сустава. Будучи наполненными синовиальной жидкостью, они облегчают трение сухожилий и мышц при движениях.

    Скелет – это основа опорно-двигательной системы, главное основание организма. Он состоит из костей, которые служат опорой всем мягким тканям. Что же находится в самих костях, ведь невозможно их представить пустыми? Ниже мы расскажем, что такое компактное вещество кости.

    Твердость костей сравнивают с прочностью металлических поверхностей. Их микрохимический состав представлен следующими компонентами:

    • водой – 50%
    • элементами белкового происхождения (оссейном) – 12,5%
    • неорганическими включениями с трикальцийфосфатом – 21,8%
    • липидами – 15,7%

    Таблица 1. Существующие подвиды.

    Хрящевые ткани покрывают суставные поверхности, сверху на них расположена надкостница, внутри – костный мозг.

    Разбор анатомии скелета на видео:

    Строение костей

    Для лучшего представления о теме нашей статьи сперва следует ознакомиться со структурой кости в целом.

    Взяв срез изучаемого материала и увеличив его с помощью микроскопа, можно увидеть множество костных пластинок, сосредоточенных вокруг специального канала, который содержит в себе нервы и сосуды. Пластинки эти представляют собой систему, под названием остеон. Это главная структурная единица.

    В остеоне содержится 5-20 костных чешуек, расположенных по принципу цилиндра, состоящих из:


    Упорядочены такие пластинки в соответствии с нагрузкой, которую принимает на себя кость. Далее остеоны организуются в более крупные костные элементы под названием трабекулы. И только затем образуется костное вещество двух типов.

    Огромное значение в процедуре морфогенеза костных тканей имеют остеокласты – за счет них организм уничтожает обызвествленные хрящи и исправляет форму не до конца сформировавшейся ткани.

    Соединение костей

    Сцепления подразделяются на две основные подгруппы:

    1. Непрерывного типа – с малоподвижной или неподвижной функциональностью. Образуется из соединительных, хрящевых и костных единиц.
    2. Прерывного – подвижные, формирующиеся в более позднем периоде.

    Второй вариант соединения – это суставы, состоящие из суставной полости, сумки и поверхностей. Свободное скольжение в них обеспечивается специальной смазкой, которая выделяется из внутреннего слоя суставной сумки.

    Виды суставов

    Существует большое количество суставных аппаратов, специалисты их делят по внешнему виду. За основу классификации взяты фигуры из геометрии:


    Вторичное деление происходит по количеству осей вращения:

    • к трехосным относят шаровидные
    • двуосным – седловидные и эллипсообразные
    • одноосным – блокообразные и цилиндрическообразные

    Суставные аппараты бывают простыми (со сцеплением двух костей) и сложными (с соединением трех и более).

    Компактное и губчатое вещество

    При проведении распила отчетливо видны две подструктуры:

    • Компактный компонент – в котором костные чешуйки располагаются упорядоченно и компактно прилегают друг к другу.
    • Губчатое – с рыхлым размещением элементов (находится внутри). Когда трабекулы ложатся рыхлой плоскостью, образовываются специальные ячейки, напоминающие губчатую поверхность.

    Разница двух типов костного вещества в том, что губчатая ткань отвечает за легкость и эластичность, ввиду чего имеет значительно уменьшенную плотность. Компактная костная ткань же формирует весь корковый слой костей. Это обеспечено ее большой плотностью и прочностью строения. Поэтому данное вещество довольно тяжелое и составляет основной вес скелета.

    Костные ткани изменяются на протяжении всей жизни человека. При тяжелой физической работе компактные слои достигают большего развития. Все изменения связаны с нагрузками.

    Что такое компактное вещество

    Оно обеспечивает охранные, поддерживающие функции, является вместилищем веществ. При помощи компактного компонента происходит формирование коркового слоя у большинства костей. Оно отличается высокой прочностью, составляет до 80% от общего веса человеческого скелета.

    Где находится одна из важнейших костных структур

    Кость — это орган, и как любой другой, он состоит из нескольких видов ткани. Одна из главных – это компактное костное вещество, без которой формирование тканей невозможно в принципе. Она соседствует с немаловажным губчатым веществом. Их противопоставления будут рассмотрены ниже.

    В связи с принимаемой на себя функцией кость занимает наиболее подходящее расположение в скелете. По данному принципу действуют и костные ткани.

    Поэтому компактная костная ткань, точнее ее большее количество находится в костях, отвечающих за подвижность скелета, а также тех, которые выполняют функцию опоры.

    Таблица 2. Виды, которые не обходятся без компактного компонента.

    Строение компактного вещества

    Упомянутый компонент состоит из первичной структурной единицы остеона, который главным образом и отвечает за ее прочность.

    О строении скелета узнайте из предложенного видеоматериала.

    Функции компактной костной ткани

    В детстве дети часто слышат от родителей призыв к активному занятию спортом или гимнастикой. К сожалению, не все следуют советам старших и только со временем понимают, какое огромное значение имели родительские фразы.

    Рассматривая причину вышеупомянутого, нужно обратить внимание на следующее: костное вещество делится на два типа, каждый из которых имеет разный состав. В то время, когда губчатое вещество формируется из органических химических элементов (оссеина), компактное вещество состоит из неорганических веществ. Главным образом их составом являются соли кальция фосфорнокислая известь. Они отвечают за твердость ткани.

    Маленький организм имеет большое количество оссеина, чем обусловлена гибкость растущих тканей. Когда процесс роста подходит к фазе завершения, некоторые хрящи заменяются костьми, а сами кости приобретают необходимое количество огрубевших выступов и углублений, на которых крепятся связки и система мышц.

    Чем больше мышечной массы накапливает организм в период роста, тем большее количество необходимых неровностей успевают создать кости. Затем компактная костная ткань формирует плотный корковый слой, и строение скелета практически не подлежит дальнейшим изменениям.

    Как можно видеть, компактная ткань вступает в полное действие во вторую очередь, после губчатого. Этим обусловлена главная защитная функция кости.

    Также компактный компонент запасает все химические элементы, необходимые костям. Именно оно содержит в своей структуре большое количество питательных отверстий, сквозь которые проникают кровеносные сосуды несущие питание.

    Ввиду слаженной работы компактного вещества, нервов и сосудов, она имеет возможность расти в толщину, что необходимо.

    Компактный компонент, составляя большую часть костной структуры, образует ее основную массу. Выполняя главную функцию защиты скелета, а значит, и поддержки всего организма в целом компактное вещество, с возрастом, требует к себе достаточного внимания, в виде дополнительных источников минеральных элементов, а именно – витаминов A, D и конечно, кальция.

    Мар 18, 2016 Виолетта Лекарь

    О своем организме человек знает много, например, где расположены органы, какую функцию они выполняют. Почему бы не проникнуть вглубь кости и не узнать ее строение и состав? Это очень занимательно, ведь химический состав костей весьма разнообразен. Он помогает понять, почему каждый костный элемент очень важен и какую функцию он несет.

    Основная информация

    Живая кость у взрослых людей имеет:

    • 50% - вода;
    • 21, 85% - вещества неорганического типа;
    • 15, 75% - жир;
    • 12,4% - коллагеновые волокна.

    Вещества неорганического типа – это разные соли. Большая их часть представлена известковым фосфатом (шестьдесят процентов). В не таком большом количестве присутствует известковый карбонат и магниевый сульфат (5,9 и 1,4% соответственно). Интересно, что в костях представлены все земные элементы. Минеральные соли поддаются растворению. Для этого нужен некрепкий раствор азотной или соляной кислоты. Процесс растворения в этих веществах имеет свое название – декальцинация. После нее остается лишь органической вещество, которое сохраняет костную форму.

    Органическое вещество отличается пористостью и эластичностью. Его можно сравнить с губкой. Что происходит, когда удаляется это вещество через сжигание? Кость по форме остается прежней, но теперь она становится хрупкой.

    Понятно, что только взаимосвязь неорганических и органических веществ делает костный элемент прочным, упругим. Еще более прочной кость становится благодаря составу губчатого и компактного вещества.

    Неорганический состав

    Примерно век назад было высказано мнение, что костная ткань человека, точнее, ее кристаллы, по структуре похожи на апатиты. Со временем это было доказано. Костные кристаллы – гидроксилапатиты, а по форме похожи на палочки и пластины. Но кристаллы – это лишь доля минеральной фазы ткани, другая доля – это аморфный фосфат кальция. Его содержание зависит от возраста человека. У молодых людей, подростков и детей его много, больше, чем кристаллов. Впоследствии соотношение меняется, поэтому в более старшем возрасте больше уже кристаллов.

    Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция

    Организм взрослого человека имеет более одного килограмма кальция. Он содержится в основном в зубных и костных элементах. В сочетании с фосфатом образуется гидроксилапатит, который не растворяется. Особенность в том, что в костях основная часть кальция регулярно обновляется. Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция.

    Минеральная доля имеет много ионов, но чистый гидроксилапатит их не содержит. Есть ионы хлора, магния и других элементов.

    Органический состав

    95% матрикса органического типа – это коллаген. Если говорить о его значимости, то вместе с минеральными элементами он является основным фактором, от которого зависят механические костные свойства. Коллаген ткани кости имеет особенности:

    • в нем больше оксипролина по сравнению с кожным коллагеном;
    • в нем много свободных ε-амино групп оксилизиновых и лизиновых остатков;
    • в нем больше фосфата, основная часть которого связана с сериновыми остатками.

    Сухой деминерализованный костный матрикс содержит почти двадцать процентов белков неколлагеновых. Среди них есть части протеогликанов, но их немного. Органический матрикс содержит глюкозаминогликаны. Считается, что они напрямую связаны с оссификацией. Кроме того, если они изменяются, происходит окостенение. В костном матриксе есть липиды – прямой компонент ткани кости. Они участвуют в минерализации. Костный матрикс имеет еще одну особенность – в нем очень много цитрата. Почти девяносто его процентов – доля костной ткани. Считается, что цитрат важен для процесса минерализации.

    Вещества кости

    Большая часть костей взрослого человека имеет в составе пластинчатую костную ткань, из которой образуется два вида вещества: губчатой и компактное. Их распределение зависит от функциональных нагрузок, осуществляемых на кость.

    Если рассматривать строение костей, то в образовании диафизов трубчатых костных элементов играет важную роль компактное вещество. Оно как тонкая пластина покрывает снаружи их эпифизы, плоские, губчатые кости, которые построены из губчатого вещества. В компактном веществе очень много тоненьких канальцев, которые состоят из кровеносных сосудов и волокон нервов. Некоторые каналы находятся в основном параллельно костной поверхности.

    Стенки каналов, расположенных в центре, сформированы пластинками, толщина которых от четырех до пятнадцати мкм. Они как будто вставлены друг в друга. Один канал возле себя может иметь двадцать подобных пластинок. Состав кости включает в себя остеон, то есть объединение канала, расположенного в центре, с пластинками возле него. Между остеонами есть пространства, которые наполнены вставочными пластинками.

    В строении кости не менее важное значение имеет губчатое вещество. Его название дает основание предположить, что оно похоже на губку. Так оно и есть. Она выстроена с балок, между которыми присутствуют ячейки. Кость человека постоянно испытывает нагрузки в виде сжатия и растяжения. Именно они определяют размеры балок, их расположение.

    Костное строение включает надкостницу, то есть соединительнотканную оболочку. Она прочно соединена с костным элементом с помощью волокон, которые проходят в его глубину. Накостница имеет два слоя:

    1. Наружный, фиброзный. Он формируется волокнами коллагена, благодаря которым оболочка отличается прочностью. Этот слой имеет в строении нервы и сосуды.
    2. Внутренний, ростковый. В его строении есть остеогенные клетки, благодаря которым кость расширяется и восстанавливается после травм.

    Получается, что надкостница выполняет три основные функции: трофическую, защитную, костеобразующую. Говоря о строении кости также следует упомянуть об эндосте. Им кость покрыта изнутри. Он похож на тонкую пластинку и несет в себе остеогенную функцию.

    Еще немного о костях

    Благодаря удивительному строению и составу кости обладают уникальными характеристиками. Они очень пластичны. Когда человек выполняет физические нагрузки, тренируется, кости проявляют гибкость и подстраиваются под изменяющиеся обстоятельства. То есть в зависимости от нагрузок увеличивается или уменьшается количество остеонов, меняется толщина пластинок веществ.

    Каждый человек может посодействовать оптимальному костному развитию. Для этого необходимо регулярно и умеренно заниматься физическими упражнениями. Если в жизни преобладает сидячий образ действий, кости начнут ослабляться и станут более тонкими. Есть заболевания костей, которые ослабляют их, например, остеопороз, остеомиелит. На строение кости может оказать влияние профессия. Конечно, не последнюю роль играет наследственность.

    Итак, на некоторые особенности костного строения человек не способен повлиять. Все же некоторые факторы зависят от него. Если с детства родители будут следить за тем, чтобы ребенок правильно питался и занимался умеренной физической нагрузкой, его кости будут в прекрасном состоянии. Это значительно повлияет на его будущее, ведь ребенок вырастет крепким, здоровым, то есть успешным человеком.

    Основной структурно-функциональной единицей скелета явля­ется кость. Каждая кость в организме человека – это живой, плас­тичный, изменяющийся орган. Кость как орган состоит из несколь­ких тканей, имеет свою определенную морфологическую структуру и функционирует как часть целостного организма. Основной тканью в кости является костная ткань, кроме нее имеется плотная соединительная ткань, образующая, например, оболочку кости, покрывающую ее снаружи, рыхлая соединительная ткань, одевающая сосуды, хрящевая, покрывающая концы костей или образующая зоны роста, ретикулярная ткань – основа костного мозга и элементы нервной ткани – нервы и нервные окончания. Каждая кость имеет определенную форму, величину, строение и находится в связи с соседними костями. В состав скелета входит 206 костей – 85 парных и 36 непарных. Кости составляют примерно 18% веса тела.

    Химический состав костей. Кость состоит из двух видов хими­ческих веществ: неорганических и органических. К неорганическим веществам относятся вода и соли (главным образом соли кальция). Органическое вещество кости называется оссеином. В свежей кости около 50% воды, 22% солей, 12% оссеина и 16% жира. Обез­воженная, обезжиренная и отбеленная кость содержит приблизи­тельно 1 / 3 оссеина и 2 / 3 неорганических веществ.

    Особое специфическое физико-химическое соединение органи­ческих и неорганических веществ в костях и обусловливает их ос­новные свойства – упругость, эластичность, прочность и твердость. В этом легко убедиться. Если кость положить в соляную кислоту, то соли растворятся, останется оссеин, кость сохранит форму, но ста­нет очень мягкой (ее можно завязать в узел). Если же кость под­вергнуть сжиганию, то органические вещества сгорят, а соли оста­нутся (зола), кость тоже сохранит свою форму, но будет очень хрупкой. Таким образом, эластичность кости связана с органиче­скими веществами, а твердость и крепость – с неорганическими. Кость человека выдерживает давление на 1 мм 2 15 кг, а кирпич всего 0,5 кг.

    Химический состав костей непостоянен, он меняется с возрастом, зависит от функциональных нагрузок, питания и других факторов. В костях детей относительно больше, чем в костях взрослых, оссеина, они более эластичны, меньше подвержены переломам, но под влиянием чрезмерных нагрузок легче деформируются Кости, выдерживающие большую нагрузку, богаче известью, чем кости менее нагруженные. Питание только растительной или только животной пищей также может вызвать изменения химического состава костей. При недостатке в пище витамина D в костях ребенка плохо откладываются соли извести, сроки окостенения нарушаются, а недоста­ток витамина А может привести к утолще­нию костей, запустению каналов в костной ткани.

    В пожилом возрасте количество оссеина снижается, а количество неорганических ве­ществ солей, наоборот, увеличивается, что снижает ее прочностные свойства, создавая предпосылки к более частым переломам кос­тей. К старости в области краев суставных поверхностей костей могут появляться раз­растания костной ткани в виде шипов, выростов, что может ограничивать подвиж­ность в суставах и вызывать болезненные ощущения при движениях. О механических свойствах кости можно судить на основании их крепости на сжатие, растяжение, разрыв, излом и т. п. На сжатие кость в десять раз крепче хряща, в пять раз прочнее железобетона, в два раза больше крепости свинца. На растяжение компактное вещество кости выдерживает нагрузку до 10-12 кг на 1 мм 2 , а на сжатие – 12-16 кг. По сопротивлению на разрыв кость в продольном на­правлении превышает сопротивление дуба и равна сопротивлению чугуна. Так, напри­мер, для раздробления бедренной кости давлением нужно приблизительно 3 тыс. кг, для раздробления большеберцовой кости не менее 4 тыс. кг. Органическое вещество кости – оссеин выдерживает нагрузку на растяжение 1,5 кг на 1 мм 2 , на сжатие – 2,5 кг, крепость же сухожилий составляет 7 кг на 1 мм 2 , Несмотря на значительную крепость и прочность кость весьма пластичный орган и может перестраиваться на протяжении всей жизни че­ловека.

    Рис. Строение трубчатой кости.

    Кости в организме человека расположены не изолированно друг от друга, а связаны между собой в одно единое целое. Причем характер их соединения определяется функциональными усло­виями: в одних частях скелета движения между костями выражены больше, в других – меньше. Еще П.Ф. Леосгафт писал, что «ни в одном другом отделе анатомии нельзя так «стройно» и последователь­но выявить связь между формой и отправлением» (функцией). По форме соединяющихся костей можно определить характер движе­ния, а по характеру движений – представить форму соеди­нений.

    Основным положением при соединении костей является то, что они «соединяются между собой таким образом, что при наимень­шем объеме места соединения здесь существуют наибольшее разно­образие и величина движений при возможно большей крепости в наиболее выгодном противодействии влиянию толчков и сотрясе­ний» (П.Ф. Лесгафт).

    Все многообразие соединения костей можно представить в виде трех основных типов. Различают непрерывные соединения – синартрозы , прерывные – диартрозы и полупрерывные – гемиартрозы (полусуставы).

    Непрерывными соединениями костей называются та­кие, при которых между костями нет перерыва, они связаны спло­шной прослойкой ткани.

    Прерывные соединения – это такие, когда между соеди­няющимися костями имеется перерыв – полость.

    Полупрерывные соединения характеризуются тем, что в ткани, которая расположена между соединяющимися костями, имеется небольшая полость – щель (2-3 мм), заполненная жид­костью. Однако эта полость не разделяет полностью костей, и основные элементы прерывного соединения отсутствуют. Примером такого вида соединений может служить соединение между лобковыми костями.

    Непрерывные соединения костей филогенетически более древ­ние. У низших животных исключительно непрерывные соединения. У человека большую часть составляют прерывные соединения ко­стей. Это более поздний, наиболее совершенный и наиболее под­вижный вид соединений, хотя и менее прочный. Происходят прерывные соединения из непрерывных путем их постепенного преобра­зования.

    Возникновение различного характера соединений костей можно наблюдать и в онтогенезе человека. Аналогично стадиям развития костей происходит и развитие их соединений. На ранних стадиях образования скелета зачатки костей связаны друг с другом лишь зародышевой соединительной тканью. В зависимости от функци­ональной направленности там, где между соединяющимися костя­ми нет необходимости в движениях большого размаха, остается со­единительная ткань, которая может превращаться в хрящ для обеспечения подвижности и амортизации толчков или в кость. Так формируются непрерывные соединения. Там, где необходима боль­шая подвижность между костями, соединительная ткань рас­сасывается, возникает прерывное соединение, с полостью между костями. Полость появляется к концу 2-го месяца эмбриональной жизни.

    Скелет – это основа опорно-двигательной системы, главное основание организма. Он состоит из костей, которые служат опорой всем мягким тканям. Что же находится в самих костях, ведь невозможно их представить пустыми?

    Где находится одна из важнейших костных тканей?

    Кость - это орган, и как любой другой, он состоит из нескольких видов ткани. Одна из главных – это компактное костное вещество, без которой формирование кости невозможно в принципе. Она соседствует с немаловажным губчатым веществом. Их противопоставления будут рассмотрены ниже.

    Кости человека бывают различных видов

    Кости бывают нескольких видов и отличаются между собой не только размерами. Каждая из них имеет индивидуальное предназначение. В связи с принимаемой на себя функцией кость занимает наиболее подходящее расположение в скелете. По данному принципу действуют и костные ткани.

    Поэтому компактная костная ткань, точнее ее большее количество находится в костях, отвечающих за подвижность скелета, а также тех, которые выполняют функцию опоры.

    Не обходятся без компактного вещества следующие кости:

    • Длинные. Отвечают за скелет конечностей. Их трубчатая средняя часть полностью заполнена компактным веществом;
    • Плоские. Их наружная часть покрыта компактным веществом;
    • Короткие. Компактная костная ткань также покрывает их снаружи, тонким слоем.

    Строение компактного вещества кости

    Для лучшего представления о строении компактной костной ткани сперва следует ознакомиться со структурой кости в целом.

    На срезе кости виды пластинки

    Взяв срез кости и увеличив его с помощью микроскопа, можно увидеть множество костных пластинок, сосредоточенных вокруг специального канала, который содержит в себе нервы и сосуды. Пластинки эти представляют собой систему, под названием Остеон. Это главная структурная единица кости.

    Упорядочены такие пластинки в соответствии с нагрузкой, которую принимает на себя кость. Далее остеоны организуются в более крупные костные элементы под названием трабекулы. И только затем образуется костное вещество двух типов.

    Весь процесс зависит от плотности образования этих костных элементов:

    • В случае, когда трабекулы ложатся рыхлой плоскостью – образовываются специальные ячейки, напоминающие губчатую поверхность. Так формируется губчатая костная ткань;
    • Когда трабекулы ложатся плотным слоем – образуется компактное вещество кости.

    Разница двух типов костного вещества в том, что губчатая ткань отвечает за легкость и эластичность, ввиду чего имеет значительно уменьшенную плотность. Компактная костная ткань же формирует весь корковый слой костей. Это обеспечено ее большой плотностью и прочностью строения. Поэтому данное вещество довольно тяжелое и составляет основной вес костей скелета.

    Таким образом, компактное вещество кости состоит из первичной структурной единицы остеона, который главным образом и отвечает за ее прочность.

    О строении скелета узнайте из предложенного видеоматериала.

    Функции компактной костной ткани

    В детстве дети часто слышат от родителей призыв к активному занятию спортом или гимнастикой. К сожалению, не все следуют советам старших и только со временем понимают, какое огромное значение имели родительские фразы.

    Костное вещество бывает двух типов

    Рассматривая причину вышеупомянутого, нужно обратить внимание на следующее: костное вещество делится на два типа, каждый из которых имеет разный состав. В то время, когда губчатое вещество формируется из органических химических элементов (оссеина), компактное вещество кости состоит из неорганических веществ. Главным образом их составом являются соли кальция фосфорнокислая известь. Они отвечают за твердость ткани.

    Маленький организм имеет большое количество оссеина, чем обусловлена гибкость растущих костей. Когда процесс роста костей подходит к фазе завершения, некоторые хрящи заменяются костьми, а сами кости приобретают необходимое количество огрубевших выступов и углублений, на которых крепятся связки и система мышц.

    Чем больше мышечной массы накапливает организм в период роста, тем большее количество необходимых неровностей успевают создать кости. Затем компактная костная ткань формирует плотный корковый слой, и строение скелета практически не подлежит дальнейшим изменениям.

    Как можно видеть, компактное ткань вступает в полное действие во вторую очередь, после губчатого. Этим обусловлена главная защитная функция кости.

    Также компактное вещество кости запасает все химические элементы, необходимые костям. Именно оно содержит в своей структуре большое количество питательных отверстий, сквозь которые проникают кровеносные сосуды несущие питание.

    Ввиду слаженной работы компактного вещества, нервов и сосудов кости, она имеет возможность расти в толщину, что необходимо.

    Компактное вещество кости, составляя большую часть костной структуры, образует ее основную массу. Выполняя главную функцию защиты скелета, а значит, и поддержки всего организма в целом компактное вещество, с возрастом, требует к себе достаточного внимания, в виде дополнительных источников минеральных элементов, а именно – витаминов A, D и конечно, кальция.

    Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

    Мар 18, 2016Виолетта Лекарь

    vselekari.com

    Виды костной ткани, строение трубчатой кости

    Костная ткань бывает ретикулофиброзной и пластинчатой.

    Ретикулофиброзная (грубоволокнистая) костная ткань

    Ретикулофиброзная костная ткань (textus osseus reticulofibrosus) встречается главным образом у зародышей. У взрослых ее можно обнаружить на месте заросших черепных швов, в местах прикрепления сухожилий к костям. Беспорядочно расположенные коллагеновые волокна образуют в ней толстые пучки, отчетливо заметные микроскопически даже при небольших увеличениях.

    В основном веществе ретикулофиброзной костной ткани находятся удлиненно-овальной формы костные лакуны с длинными анастомозирующими канальцами, в которых лежат остеоциты с их отростками. С поверхности грубоволокнистая кость покрыта надкостницей.

    Пластинчатая костная ткань

    Пластинчатая костная ткань (textus osseus lamellaris) - наиболее распространенная разновидность костной ткани во взрослом организме. Она состоит из костных пластинок (lamellae ossea). Толщина и длина последних колеблется от нескольких десятков до сотен микрометров. Они не монолитны, а содержат фибриллы, ориентированные в различных плоскостях.

    В центральной части пластин фибриллы имеют преимущественно продольное направление, по периферии - прибавляется тангенциальное и поперечное направления. Пластинки могут расслаиваться, а фибриллы одной пластинки могут продолжаться в соседние, создавая единую волокнистую основу кости. Кроме того, костные пластинки пронизаны отдельными фибриллами и волокнами, ориентированными перпендикулярно костным пластинкам, вплетающимися в промежуточные слои между ними, благодаря чему достигается большая прочность пластинчатой костной ткани. Из этой ткани построены и компактное, и губчатое вещества в большинстве плоских и трубчатых костей скелета.

    Гистологическое строение трубчатой кости как органа

    Трубчатая кость как орган в основном построена из пластинчатой костной ткани, кроме бугорков. Снаружи кость покрыта надкостницей, за исключением суставных поверхностей эпифизов, покрытых гиалиновым хрящем.

    Надкостница, или периост (periosteum). В надкостнице различают два слоя: наружный (волокнистый) и внутренний (клеточный). Наружный слой образован в основном волокнистой соединительной тканью. Внутренний слой содержит остеогенные камбиальные клетки, преостеобласты и остеобласты различной степени дифференцировки. Камбиальные клетки веретеновидной формы имеют небольшой объем цитоплазмы и умеренно развитый синтетический аппарат. Преостеобласты - энергично пролиферирующие клетки овальной формы, способные синтезировать мукополисахариды. Остеобласты характеризуются сильно развитым белоксинтезирующим (коллаген) аппаратом. Через надкостницу проходят питающие кость сосуды и нервы.

    Надкостница связывает кость с окружающими тканями и принимает участие в ее трофике, развитии, росте и регенерации.

    Строение диафиза

    Компактное вещество, образующее диафиз кости, состоит из костных пластинок, [толщина которых колеблется от 4 до 12- 15 мкм]. Костные пластинки располагаются в определенном порядке, образуя сложные образования – остеоны, или гаверсовы системы. В диафизе различают три слоя:

      наружный слой общих пластинок,

      средний, остеонный слой, и

      внутренний слой общих пластинок.

    Наружные общие (генеральные) пластинки не образуют полных колец вокруг диафиза кости, перекрываются на поверхности следующими слоями пластинок. Внутренние общие пластинки хорошо развиты только там, где компактное вещество кости непосредственно граничит с костномозговой полостью. В тех же местах, где компактное вещество переходит в губчатое, его внутренние общие пластинки продолжаются в пластинки перекладин губчатого вещества.

    В наружных общих пластинках залегают прободающие (фолькмановы) каналы, по которым из надкостницы внутрь кости входят сосуды. Со стороны надкостницы в кость под разными углами проникают коллагеновые волокна. Эти волокна получили название прободающих (шарпеевых) волокон. Чаще всего они разветвляются только в наружном слое общих пластинок, но могут проникать и в средний остеонный слой, однако они никогда не входят в пластинки остеонов.

    В среднем слое костные пластинки располагаются в остеонах. В костных пластинках располагаются коллагеновые фибриллы, впаянные в обызвествленный матрикс. Фибриллы имеют разное направление, но преимущественно они ориентированы параллельно длинной оси остеона.

    Остеоны (гаверсовы системы) являются структурными единицами компактного вещества трубчатой кости. Они представляют собой цилиндры, состоящие из костных пластинок, как бы вставленных друг в друга. В костных пластинках и между ними располагаются тела костных клеток и их отростки, замурованные в костном межклеточном веществе. Каждый остеон отграничен от соседних остеонов так называемой спайной линией, образованной основным веществом, цементирующим их. В центральном канале остеона проходят кровеносные сосуды с сопровождающей их соединительной тканью и остеогенными клетками.

    В диафизе длинной кости остеоны расположены преимущественно параллельно длинной оси. Каналы остеонов анастомозируют друг с другом. , в местах анастомозов прилежащие к ним пластинки изменяют свое направление. Такие каналы называют прободающими, или питательными. Сосуды, расположенные в каналах остеонов, сообщаются друг с другом и с сосудами костного мозга и надкостницы.

    Большую часть диафиза составляет компактное вещество трубчатых костей. На внутренней поверхности диафиза, граничащей с костномозговой полостью, пластинчатая костная ткань образует костные перекладины губчатого вещества кости. Полость диафиза трубчатых костей заполнена костным мозгом.

    Эндост (endosteum) - оболочка, покрывающая кость со стороны костномозговой полости. В эндосте сформированной поверхности кости различают осмиофильную линию на наружном крае минерализованного вещества кости; остеоидный слой, состоящий из аморфного вещества, коллагеновых фибрилл и остеобластов, кровеносных капилляров и нервных окончаний, слоя чешуевидных клеток, нечетко отделяющих эндост от элементов костного мозга. Толщина эндоста превышает 1-2 мкм, но меньше, чем у периоста.

    В областях активного формирования кости толщина эндоста возрастает в 10-20 раз за счет остеоидного слоя вследствие повышения синтетической активности остеобластов и их предшественников. При ремоделировании кости в составе эндоста обнаруживаются остеокласты. В эндосте стареющей кости уменьшается популяция остеобластов и клеток-предшественников, но возрастает активность остеокластов, что ведет к истончению компактного слоя и перестройке губчатого вещества кости.

    Между эндостом и периостом существует определенная микроциркуляция жидкости и минеральных веществ благодаря лакунарно-канальциевой системе костной ткани.

    Васкуляризация костной ткани. Кровеносные сосуды образуют во внутреннем слое надкостницы густую сеть. Отсюда берут начало тонкие артериальные веточки, которые, помимо кровоснабжения остеонов, проникают в костный мозг через питательные отверстия и принимают участие в образовании питающей его сети капилляров. Лимфатические сосуды располагаются главным образом в наружном слое надкостницы.

    Иннервация костной ткани. В надкостнице миелиновые и безмиелиновые нервные волокна образуют сплетение. Часть волокон сопровождает кровеносные сосуды и проникает с ними через питательные отверстия в одноименные каналы, а затем в каналы остеонов и далее достигает костного мозга. Другая часть волокон заканчивается в надкостнице свободными нервными разветвлениями, а также участвует в образовании инкапсулированных телец.

    studfiles.net

    Кости человека: строение, состав их соединение и устройство суставов

    Каждая кость человека представляет собой сложный орган: она занимает определенное положение в теле, имеет свою форму и строение, выполняет свойственную ей функцию. В образовании кости принимают участие все виды тканей, но преобладает костная ткань.

    Общая характеристика костей человека

    Хрящ покрывает только суставные поверхности кости, снаружи кость покрыта надкостницей, внутри расположен костный мозг. Кость содержит жировую ткань, кровеносные и лимфатические сосуды, нервы.

    Костная ткань обладает высокими механическими качествами, ее прочность можно сравнить с прочностью металла. Химический состав живой кости человека содержит: 50% воды, 12,5% органических веществ белковой природы (оссеин), 21,8% неорганических веществ (главным образом фосфат кальция) и 15,7% жира.

    Виды костей по форме разделяют на:

    • Трубчатые (длинные - плечевая, бедренная и др.; короткие - фаланги пальцев);
    • плоские (лобная, теменная, лопатка и др.);
    • губчатые (ребра, позвонки);
    • смешанные (клиновидная, скуловая, нижняя челюсть).

    Строение костей человека

    Основной структурой единицей костной ткани является остеон, который виден в микроскоп при малом увеличении. Каждый остеон включает от 5 до 20 концентрически расположенных костных пластинок. Они напоминают собой вставленные друг в друга цилиндры. Каждая пластинка состоит из межклеточного вещества и клеток (остеобластов, остеоцитов, остеокластов). В центре остеона имеется канал - канал остеона; в нем проходят сосуды. Между соседними остеонами расположены вставочные костные пластинки.


    Строение кости человека

    Костную ткань образуют остеобласты, выделяя межклеточное вещество и замуровываясь в нем, они превращаются в остеоциты - клетки отростчатой формы, неспособные к митозу, со слабо выраженными органеллами. Соответственно в сформировавшейся кости содержатся в основном остеоциты, а остеобласты встречаются только в участках роста и регенерации костной ткани.

    Наибольшее количество остеобластов находится в надкостнице - тонкой, но плотной соединительно-тканной пластинке, содержащей много кровеносных сосудов, нервных и лимфатических окончаний. Надкостница обеспечивает рост кости в толщину и питание кости.

    Остеокласты содержат большое количество лизосом и способны выделять ферменты, чем можно объяснить растворение ими костного вещества. Эти клетки принимают участие в разрушении кости. При патологических состояниях в костной ткани количество их резко увеличивается.

    Остеокласты имеют значение и в процессе развития кости: в процессе построения окончательной формы кости они разрушают обызвествленный хрящ и даже новообразованную кость, «подправляя» ее первичную форму.

    Структура кости: компактное и губчатое вещество

    На распиле, шлифах кости различают две ее структуры - компактное вещество (костные пластинки расположены плотно и упорядоченно), расположенное поверхностно, и губчатое вещество (костные элементы расположены рыхло), лежащее внутри кости.


    Компактное и губчатое вещество кости

    Такое строение костей в полной мере соответствует основному принципу строительной механики - при наименьшей затрате материала и большой легкости обеспечить максимальную прочность сооружения. Это подтверждается и тем, что расположение трубчатых систем и основных костных балок соответствует направлению действия силы сжатия, растяжения и скручивания.

    Структура костей представляет собой динамическую реактивную систему, изменяющуюся в течение всей жизни человека. Известно, что у людей, занимающихся тяжелым физическим трудом, компактный слой кости достигает относительно большого развития. В зависимости от изменения нагрузки на отдельные части тела могут изменяться расположение костных балок и структура кости в целом.

    Соединение костей человека

    Все соединения костей можно разделить на две группы:

    • Непрерывные соединения, более ранние по развитию в филогенезе, неподвижные или малоподвижные по функции;
    • прерывные соединения, более поздние по развитию и более подвижные по функции.

    Между этими формами существует переходная - от непрерывных к прерывным или наоборот - полусустав.


    Строение сустава человека

    Непрерывное соединение костей осуществляется посредством соединительной ткани, хрящей и костной ткани (кости собственно черепа). Прерывное соединение костей, или сустав, является более молодым образованием соединения костей. Все суставы имеют общий план строения, включающий суставную полость, суставную сумку и суставные поверхности.

    Суставная полость выделяется условно, так как в норме между суставной сумкой и суставными концами костей пустоты не существует, а находится жидкость.

    Суставная сумка охватывает суставные поверхности костей, образуя герметическую капсулу. Суставная сумка состоит из двух слоев, наружный слой которой переходит в надкостницу. Внутренний слой выделяет в полость сустава жидкость, играющую роль смазки, обеспечивая свободное скольжение суставных поверхностей.

    Виды суставов

    Суставные поверхности сочленяющихся костей покрыты суставным хрящом. Гладкая поверхность суставных хрящей способствует движению в суставах. Суставные поверхности по форме и величине очень разнообразны, их принято сравнивать с геометрическими фигурами. Отсюда и название суставов по форме: шаровидные (плечевой), эллипсовидные (луче-запястный), цилиндрические (луче-локтевой) и др.

    Так как движения сочленяющихся звеньев совершаются вокруг одной, двух или многих осей, суставы принято также делить по количеству осей вращения на многоосные (шаровидный), двуосные (эллипсовидный, седловидный) и одноосные (цилиндрический, блоковидный).

    В зависимости от количества сочленяющихся костей суставы делятся на простые, в которых соединяется две кости, и сложные, в которых сочленяется больше двух костей.

    animals-world.ru

    Строение и виды костной ткани. Костные ткани

    Кости выполняют четыре основные функции:

    1. Они обеспечивают прочность конечностей и полостей тела, содержащих жизненно важные органы. При заболеваниях, ослабляющих или нарушающих структуру скелета, невозможно поддерживать прямую осанку, и возникают нарушения внутренних органов. Примером является сердечно-легочная недостаточность, развивающаяся у больных с выраженным кифозом из-за компрессионных переломов позвонков.
    2. Кости необходимы для движений, поскольку формируют эффективные рычаги и места прикрепления мышц. Деформация костей «портит» эти рычаги, что приводит к тяжелым нарушениям походки.
    3. Кости служат крупным резервуаром ионов, откуда организм черпает необходимые для жизни кальций, фосфор, магний и натрий при невозможности получения их из внешней среды.
    4. В костях содержится система кроветворения. Все больше данных свидетельствуют о трофических связях между стромальными клетками кости и элементами кроветворения.

    Строение кости

    Строение кости обеспечивает идеальное равновесие ее твердости и эластичности. Кость достаточно тверда, чтобы противостоять внешним воздействиям, хотя плохо минерализованная кость хрупка и подвержена переломам. В то же время кость должна быть достаточно легкой, чтобы смещаться при сокращениях мышц. Длинные трубчатые кости построены в основном из компактного вещества (плотно упакованных слоев минерализованного коллагена), придающего ткани твердость. Трабекулярные кости на поперечном срезе выглядят губчатыми, что придает им прочность и эластичность. Губчатое вещество составляет основную часть позвоночника. Заболевания, сопровождающиеся нарушением строения или уменьшением массы компактного вещества кости, приводят к переломам длинных костей, а те, при которых страдает губчатое вещество, - к переломам позвонков. Переломы длинных костей возможны и в случаях дефектов губчатого вещества.Две трети веса костей приходится на минеральные вещества, а остальное - на воду и коллаген I типа. К неколлагеновым белкам костного матрикса относятся протеогликаны, белки, содержащие у-карбоксиглутамат, гликопротеин остеонектин, фосфопротеин остеопонтин и факторы роста. В костной ткани присутствует также небольшое количество липидов.

    Минералы кости Кость содержит минеральные вещества в двух формах. Основная форма - кристаллы гидроксиапатита различной зрелости. Остальные - аморфные соли фосфата кальция с меньшим, чем в чистом гидроксиапатите, отношением кальция к фосфату. Эти соли локализованы в участках активного формирования костной ткани и в большем количестве присутствуют в молодой кости.

    Костные клетки Кость состоит из клеток трех типов: остеобластов, остеоцитов и остеокластов.

    Остеобласты Остеобласты - основные костеобразующие клетки. Их предшественниками являются мезенхимальные клетки костного мозга, которые в процессе дифференцировки начинают экспрессировать рецепторы ПТГ и витамина D, щелочную фосфатазу (выделяемую во внеклеточную среду), а также белки костного матрикса (коллаген I типа, остеокальцин, остеопонтин и др.). Зрелые остеобласты перемещаются к поверхности кости, где выстилают участки новообразования костной ткани, располагаясь под костным матриксом (остеоидом) и вызывая его минерализацию - отложение кристаллов гидроксиапатита на слоях коллагена. В результате формируется пластинчатая костная ткань. Минерализация требует присутствия достаточного количества кальция и фосфата во внеклеточной жидкости, равно как и щелочной фосфатазы, которая секретируется активными остеобластами. Некоторые «стареющие» остеобласты уплощаются, превращаясь в неактивные клетки, выстилающие поверхность трабекул, другие - погружаются в компактное вещество кости, превращаясь в остеоциты, а третьи - подвергаются апоптозу.

    {module директ4}

    Остеоциты Остеобласты, остающиеся в компактном веществе кости в ходе ее обновления, превращаются в остеоциты. Их способность к синтезу белка резко падает, но в клетках появляется множество отростков (канальцев), тянущихся за пределы полости резорбции (лакуны) и соединяющихся с капиллярами, отростками других остеоцитов данной костной единицы (остеона) и отростками поверхностных остеобластов. Считается, что остеоциты формируют синцитий, обеспечивающий перемещение минералов с костной поверхности, и, кроме того, играют роль сенсоров механической нагрузки, генерирующих основной сигнал к формированию и обновлению костной ткани.

    Остеокласты Остеокласты - гигантские многоядерные клетки, специализирующиеся на резорбции костной ткани. Они происходят от кроветворных клеток и больше не делятся. Образование остеокластов стимулируется остеобластами, которые своей поверхностной молекулой RANKL взаимодействуют с рецептором-активатором ядерного фактора каппа-В (RANK) на поверхности предшественников и зрелых остеокластов. Остеобласты выделяют также макрофагальный колониестимулирующий фактор-1 (М-КСФ-1), усиливающий действие RANKL на остеокластогенез. Кроме того, остеобласты и другие клетки продуцируют «ложный» рецептор остео-протегерин (ОПГ), который связывается с RANKL и блокирует его действие. ПТГ и 1,25(OH) 2 D (как и цитокины ИЛ-1, ИЛ-6 и ИЛ-11) стимулируют синтез RANKL в остеобластах. ФНО потенцирует стимулирующее действие RANKL на остеокластогенез, а ИФНγ блокирует этот процесс, действуя непосредственно на остеокласты.

    Подвижные остеокласты окружают участок поверхности кости плотным кольцом, и прилегающая к кости их мембрана складывается в особую структуру, называемую гофрированной каемкой. Гофрированная каемка является отдельной органеллой, но действует как гигантская лизосома, которая растворяет и разрушает костный матрикс, секретируя кислоту и протеазы (преимущественно катепсин К). Пептиды коллагена, образующиеся в результате резорбции кости, содержат пиридинолиновые структуры, по уровню которых в моче можно судить об интенсивности костной резорбции. Таким образом, резорбция кости зависит от скорости созревания остеокластов и активности их зрелых форм. На зрелых остеокластах имеются рецепторы кальцитонина, но не ПТГ или витамина D.

    Обновление кости

    Обновление кости - это непрерывный процесс разрушения и образования костной ткани, продолжающийся всю жизнь. В детстве и подростковом возрасте обновление костей протекает с высокой скоростью, но количественно преобладает процесс костеобразования и увеличения костной массы. После того как костная масса достигает максимума, начинают преобладать процессы, определяющие динамику костной массы на протяжении остальной жизни. Обновление происходит на отдельных участках костной поверхности по всему скелету. В норме около 90% поверхности костей находится в покое, будучи покрытой тонким слоем клеток. В ответ на физические или биохимические сигналы клетки-предшественницы костного мозга мигрируют к определенным местам костной поверхности, где сливаются, образуя многоядерные остеокласты, которые «выедают» в кости полость.Обновление компактного вещества кости начинается изнутри конической полости, продолжающейся в туннель. В этот туннель наползают остеобласты, формирующие цилиндр новой кости и постепенно сужающие туннель, пока не остается узкий гаверсов канал, через который питаются оставшиеся в виде остеоцитов клетки. Кость, образованная в одной конической полости, носит название остеона.При резорбции губчатого вещества образуется зубчатый участок костной поверхности, называемый гаушиповой лакуной. Через 2-3 месяца фаза резорбции завершается, оставляя после себя полость глубиной около 60 мкм, в основание которой врастают предшественники остеобластов из стромы костного мозга. Эти клетки приобретают фенотип остеобластов, т. е. начинают секретировать такие костные белки, как щелочная фосфатаза, остеопонтин и остеокальцин, и постепенно замещают резорбированную кость новым костным матриксом. Когда новообразованный остеоид достигает толщины примерно в 20 мкм, начинается минерализация. Весь цикл обновления кости в норме продолжается около 6 месяцев.Этот процесс не нуждается в гормональных влияниях, за тем лишь исключением, что 1,25(OH) 2 D поддерживает всасывание минеральных веществ в кишечнике и тем самым обеспечивает обновляющуюся кость кальцием и фосфором. Например, при гипопаратиреозе с костной тканью не происходит ничего, кроме замедления ее обмена. Однако системные гормоны используют кости как источник минеральных веществ для поддержания постоянства внеклеточного уровня кальция. Одновременно с этим происходит восполнение костной массы. Например, когда ПТГ активирует резорбцию кости (для коррекции гипокальциемии), усиливаются и процессы новообразования костной ткани, направленные на восполнение ее массы. Роль остеобластов в регуляции активности остеокластов изучена довольно подробно, но механизм «привлечения» остеобластов к очагам костной резорбции остается неясным. Одна из возможностей заключается в том, что при резорбции костей из костного матрикса высвобождается ИФР-1, который стимулирует пролиферацию и дифференцировку остеобластов.

    Резорбированная кость восполняется не полностью, и по завершении каждого цикла обновления сохраняется некоторый дефицит костной массы. В течение жизни дефицит увеличивается, что определяет хорошо известный феномен возрастного уменьшения костной массы. Этот процесс начинается вскоре после прекращения роста тела. Различные воздействия (нарушения питания, гормоны и лекарственные вещества) влияют на костный обмен общим путем - через изменение скорости обновления костной ткани, но разными механизмами. Изменения гормональной среды (гипертиреоз, гиперпаратиреоз, гипервитаминоз D) обычно увеличивают число очагов обновления. Другие факторы (высокие дозы глюкокортикоидов или этанол) нарушают активность остеобластов. Эстрогены или недостаточность андрогенов увеличивают активность остеокластов. В любое данное время существует транзиторный дефицит костной массы, называемый «пространством обновления», т.е. еще незаполненный участок костной резорбции. В ответ на любой стимул, меняющий исходное количество участков обновления («единиц обновления»), пространство обновления либо увеличивается, либо уменьшается, пока не установится новое равновесие. Это проявляется увеличением или снижением костной массы.

    Костная ткань составляет основу скелета. Она отвечает за защиту внутренних органов, передвижение, участвует в обмене веществ. К костным тканям относят и ткани зубов. Кость – это твердый и одновременно пластичный орган. Его особенности продолжают изучаться. В организме человека более 270 костей, каждая из которых выполняет свою функцию.

    Костная ткань представляет собой разновидность соединительной ткани. Одна одновременно пластичная и устойчивая к деформации, прочная.

    Выделяют 2 основных вида костной ткани в зависимости от ее строения:

    1. Грубоволокнистая. Это более плотная, но менее эластичная костная ткань. В организме взрослого человека ее очень мало. В основном она встречается в местах соединения кости с хрящом, в местах соединения черепных швов, а также в местах срастания переломов. Грубоволокнистая костная ткань в большом количестве встречается в период эмбрионального развития человека. Она выступает в качестве зачатка скелета, а затем постепенно перерождается в пластинчатую. Особенность этого типа ткани заключается в том, что ее клетки расположены хаотично, что и делает ее более плотной.
    2. Пластинчатая. Пластинчатая костная ткань является основной в скелете человека. Она входит в состав всех костей человеческого тела. Особенностью этой ткани является расположение клеток. Они образуют волокна, которые в свою очередь образуют пластинки. Волокна, из которых состоят пластины, могут располагаться под различным углом, что делает ткань прочной и эластичной одновременно, но сами пластины располагаются параллельно друг другу.

    В свою очередь пластинчатая костная ткань делится на 2 вида - губчатую и компактную. Губчатая ткань имеет вид ячеек и является более рыхлой. Однако несмотря на пониженную прочность, губчатая ткань более объемная, легкая, менее плотная.

    Именно губчатая ткань содержит в себе костный мозг, участвующий в кроветворном процессе.

    Компактная костная ткань выполняет защитную функцию, поэтому она более плотная, прочная и тяжелая. Чаще всего эта ткань располагается снаружи кости, покрывая и защищая ее от повреждений, трещин, переломов. Компактная костная ткань составляет большую часть скелета (около 80%).

    Строение и функции пластинчатой костной ткани

    Пластинчатая костная ткань - это самый распространенный вид костной ткани в организме человека

    Функции пластинчатой костной ткани очень важны для организма. Она защищает внутренние органы от повреждений (, легкие в грудной клетке, мозг внутри черепной коробки, органы таза и т.д.), а также позволяет человеку двигаться, выдерживая вес других тканей.

    Костная ткань устойчива к деформации, выдерживает большой вес, а также способно регенерировать и срастаться при переломах.

    Костная ткань состоит из межклеточного вещества, а также из 3 видов костных клеток:

    1. Остеобласты. Это самые молодые, чаще овальные клетки костной ткани диаметром не более 20 мкм. Именно эти клетки синтезируют вещество, заполняющее межклеточное пространство костной ткани. В этом заключается основная функция клеток. Когда образуется достаточное количество этого вещества, остеобласты обрастают им и становятся остеоцитами. Остеобласты способны делиться, а также имеют неровную поверхность с небольшими отростками, с помощью которых они крепятся к соседним клеткам. Есть и не активные остеобласты, они часто локализуются в самых плотных частях кости и имеют малое количество органелл.
    2. Остеоциты. Это стволовые клетки, которые чаще можно обнаружить внутри тканей надкостницы (верхнего, прочного слоя кости, который защищает ее и позволяет быстро срастаться при повреждении). Когда остеобласты обрастают межклеточным веществом, они превращаются в остеоциты и локализуются в межклеточном пространстве. Их способность к синтезированию несколько ниже, чем у остеобластов.
    3. Остеокласты. Самые крупные многоядерные клетки костной ткани, которые встречаются только у позвоночных животных. Их основная функция - регуляция и разрушение старой костной ткани. Остеобласты создают новые клетки костной ткани, а остеокласты разрушают старые. В каждой такой клетке содержится до 20 ядер.

    Узнать состояние костной ткани можно с помощью. Пластинчатая костная ткань играет важную роль в организме, но она может подвергаться разрушению, изнашиванию при недостатке кальция, а также из-за инфекций.

    Заболевания пластинчатой костной ткани:

    • Опухоли. Существует понятие «рак кости», однако чаще всего опухоль прорастает в кости из других тканей, а не зарождается в ней. Опухоль может зарождаться из клеток костного мозга, но не самой кости. Саркома (первичный рак кости) встречается довольно редко. Это заболевание сопровождается сильными болями в костях, отеками мягких тканей, ограничением подвижности, опуханием и деформацией суставов.
    • Остеопороз. Это наиболее частое костное заболевание, сопровождающееся снижением количества костной ткани, истончением костей. Это сложное заболевание, которое длительное время протекает бессимптомно. Первой начинает страдать губчатая ткань. Пластинки в ней начинают опустошаться, а сама ткань повреждается от ежедневных нагрузок.
    • Остеонекроз. Часть кости отмирает из-за нарушенной циркуляции крови. Остеоциты начинают погибать, что и приводит к некрозу. Чаще всего от остеонекроза страдают тазобедренные кости. К этому заболеванию приводят тромбозы и бактериальные инфекции.
    • Болезнь Педжета. Это заболевание чаще встречается в пожилом возрасте. Болезнь Педжета характеризуется деформацией костей и сильными болями. Нормальный процесс восстановления костной ткани нарушается. Причины возникновения этого заболевания неизвестны. В пораженных участках кость утолщается, деформируется и становится очень хрупкой.

    Подробнее об остеопорозе можно узнать из видео.

    Костная ткань является разновидностью соединительной ткани и состоит из клеток и межклеточного вещества, в котором содержится большое количество минеральных солей, главным образом фосфат кальция. Минеральные вещества составляют 70 % от костной ткани, органические - 30 %.

    Функции костной ткани

    механическая;

    защитная;

    участие в минеральном обмене организма - депо кальция и фосфора.

    Клетки костной ткани: остеобласты, остеоциты, остеокласты.

    Основными клетками в сформированной костной ткани являются остеоциты.

    Остеобласты

    Остеобласты содержатся только в развивающейся костной ткани. В сформированной костной ткани они отсутствуют, но содержатся обычно в неактивной форме в надкостнице. В развивающейся костной ткани они охватывают по периферии каждую костную пластинку, плотно прилегая друг к другу, образуя подобие эпителиального пласта. Форма таких активно функционирующих клеток может быть кубической, призматической, угловатой.

    Отеокласты

    Костеразрушающие клетки, в сформированной костной ткани отсутствуют. Но содержатся в надкостнице и в местах разрушения и перестройки костной ткани. Поскольку в онтогенезе непрерывно осуществляются локальные процессы перестройки костной ткани, то в этих местах обязательно присутствуют и остеокласты. В процессе эмбрионального остеогистогенеза эти клетки играют важную роль и определяются в большом количестве.

    Межклеточное вещество костной ткани

    состоит из основного вещества и волокон, в которых содержатся соли кальция. Волокна состоят из коллагена I типа и складываются в пучки, которые могут располагаться параллельно (упорядочено) или неупорядочено, на основании чего и строится гистологическая классификация костных тканей. Основное вещество костной ткани, как и других разновидностей соединительных тканей, состоит из гликозоаминогликанов и протеогликанов, однако химический состав этих веществ отличается. В частности в костной ткани содержится меньше хондроитинсерных кислот, но больше лимонной и других кислот, которые образуют комплексы с солями кальция. В процессе развития костной ткани вначале образуется органический матриксосновное вещество и коллагеновые (оссеиновые, коллаген II типа) волокна, а затем уже в них откладываются соли кальция (главным образом фосфорнокислые). Соли кальция образуют кристаллы гидроксиаппатита, откладывающиеся как в аморфном веществе, так и в волокнах, но небольшая часть солей откладывается аморфно. Обеспечивая прочность костей, фосфорнокислые соли кальция одновременно являются депо кальция и фосфора в организме. Поэтому костная ткань принимает участие в минеральном обмене.

    Классификация костных тканей

    Различают две разновидности костных тканей:

    ретикулофиброзную (грубоволокнистую);

    пластинчатую (параллельно волокнистую).

    В ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядочено. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты. Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон в соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.

    В организме человека костная ткань представлена почти исключительно пластинчатой формой. Ретикулофиброзная костная ткань встречается только как этап развития некоторых костей (теменных, лобных). У взрослых людей они находятся в области прикрепления сухожилий к костям, а также на месте окостеневших швов черепа (стреловидный шов чешуи лобной кости).

    При изучении костной ткани следует дифференцировать понятия костная ткань и кость.

    Кость

    Кость - это анатомический орган, основным структурным компонентом которого является костная ткань. Кость как орган состоит из следующих элементов:

    костная ткань;

    надкостница;

    костный мозг (красный, желтый);

    сосуды и нервы.

    Надкостница

    (периост) окружает по периферии костную ткань (за исключением суставных поверхностей) и имеет строение сходное с надхрящницей. В надкостнице выделяют наружный фиброзный и внутренний клеточный или камбиальный слои. Во внутреннем слое содержатся остеобласты и остеокласты. В надкостнице локализуются выраженная сосудистая сеть, из которой мелкие сосуды через прободающие каналы проникают в костную ткань. Красный костный мозг рассматривается как самостоятельный орган и относится к органам кроветворения и иммуногенеза.

    Скелет представляет основу, которая помогает телу держать форму, защищать органы, перемещаться в пространстве и многое другое. В общем, строение клеток костной, как и любой ткани, весьма специализированно, за счет чего есть прочность к механическому воздействию, а вместе с ней пластичность, параллельно с этим происходят процессы регенерации. К тому же клетки находятся в строго определенном взаиморасположении, благодаря чему костная, а не другая ткань, намного прочнее соединительной. Основными составляющими костной ткани являются остеобласты, остеокласты, а также остеоциты.

    Именно эти клетки поддерживают свойства ткани, обеспечивая ее гистологическое строение. Какой же секрет этих трех клеток, которые имеет в своем составе кость, определяя многие функции. Ведь прочнее кости только зубы, которые содержат в себе альвеолы челюсти. Через кости проходят сосуды, нервы, как в черепе, они содержат в себе мозг, являющийся источником кроветворения, и защищают внутренние органы. Покрытые сверху хрящевой прослойкой, они обеспечивают нормальное передвижение.

    Остеобласт, что он собой представляет

    Строение этой клетки специфическое, она представляет собой видимое под микроскопом овальное или кубическое образование. Лабораторная техника показала, что внутри цитоплазмы ядро у остеобласта крупное, светлого цвета, расположено не центрально, а несколько в сторону периферии. Рядом есть парочка ядрышек, это свидетельствует о том, что клетка способна синтезировать многие вещества. Также она имеет много рибосом, органелл, за счет которых и происходит синтез веществ. Также в этом процессе участвует гранулярная эндоплазматическая сеть, комплекс Гольджи, который выводит продукты синтеза наружу.

    За то, какое будет энергетическое обеспечение, отвечают многочисленные митохондрии. На них лежит большая работа, много их содержится в мышечной ткани. А вот в хрящевой, грубоволокнистой соединительной ткани, в отличие от мышечной, митохондрий намного меньше.

    Функции клетки

    Основная работа клетки состоит в том, чтобы производить межклеточное вещество. Также они обеспечивают минерализацию костной ткани, за счет этого она имеет особую прочность. Дополнительно клетки участвуют в синтезе многих важных ферментов костной ткани, основным из которых является щелочная фосфатаза, коллагеновые особой прочности волокна и многое другое. Ферменты, покидая пределы клетки, обеспечивают минерализацию кости.

    Разновидности остеобластов

    Помимо того, что строение клеток специфично, они функционально активны в различной степени. Активные имеют высокую синтетическую способность, а вот неактивные находятся в периферической части кости. Последние расположены возле канала кости, являются частью надкостницы, оболочки, покрывающей кость. Строение их сводится к небольшому количеству органелл.

    Остеоцит, его строение

    Эта клетка костной ткани является более дифференцированной, чем предыдущая. Есть у остеоцита отростки, которые находятся в канальцах, проходящих сквозь минерализованный матрикс кости, направление их различное. Плоское тело расположено в углублении – лакунах, со всех сторон окружено минерализованной составляющей. В цитоплазме имеется ядро овальной формы, занимающее практически весь ее объем.

    Слабое развитие имеют органеллы, небольшое количество рибосом, каналы эндоплазматической сети короткие, митохондрии, в отличие от мышечной, хрящевой ткани, немногочисленны. Через каналы, имеющие лакуны, клетки могут взаимодействовать друг с другом. Микроскопическое пространство вокруг клетки имеет скудное количество тканевой жидкости. В ней есть ионы кальция, остатка, фосфора, коллагеновые волокна (минерализированные или нет).

    Функция

    Задача клетки состоит в том, чтобы регулировать целостность костной ткани, участвовать в минерализации. Также функции клетки состоят в том, чтобы отвечать на возникающую нагрузку.

    В последнее время все более популярным становится тот факт, что клетки участвуют в процессах метаболизма костной ткани, в том числе и челюсти. Есть предположение о том, что работа клетки состоит дополнительно в том, чтобы регулировать ионный баланс организма.

    Во многом функции остеоцитов зависят от стадии цикла жизни, как хрящевой, мышечной ткани, а также воздействия гормонов на них.

    Остеокласт, его секрет

    Эти клетки значительных размеров, содержат много ядер, по своей сути, это производные кровяных моноцитов. По периферии клетка имеет гофрированную щеточную каемку. В цитоплазме клетки есть много рибосом, митохондрий, развиты канальцы эндоплазматической сети, а также комплекс Гольджи. Также клетка содержит большое число лизосом, фагоцитирующих органелл, всевозможных вакуолей, пузырьков.

    Задачи

    Эта клетка имеет свои задачи, она может создавать вокруг себя кислую среду в результате биохимических реакций в ткани кости. В результате растворяются минеральные соли, после чего ферментами и лизосомами старые или отмершие клетки растворяются и перевариваются.

    Таким образом, работа клетки состоит в том, чтобы постепенно разрушать устаревшую ткань, но при этом обновляется строение костной ткани. В результате на ее месте появляется новая, за счет чего обновляется костная структура.

    Другие компоненты

    Несмотря на свою прочность (как у бедра или нижней челюсти), в кости присутствуют органические вещества, которые дополняются неорганическими. Органическая составляющая представлена на 95% коллагеновыми белками, остальное количество занимают неколлагеновые, а также гликозминогликаны, протеогликаны.

    Неорганическая составляющая костной ткани представляет собой кристаллы вещества, называемого гидроксиапатитом, содержащем в большом количестве ионы кальция, а также фосфора. Меньше в пластинчатой структуре кости содержится солей магния, калия, фторидов, бикарбонатов. Постоянно происходит обновление пластинчатой структуры, межклеточного вещества вокруг клетки.

    Разновидности

    Всего костная ткань имеет два типа, все зависит от микроскопического ее строения. Первая называется ретикулофиброзной или грубоволокнистой, вторая - пластинчатой. Рассмотрим каждую в отдельности.

    У эмбриона, новорожденного

    Ретикулофиброзная широко представлена у эмбриона, ребенка после появления на свет. У взрослого же человека много соединительной ткани, а эта разновидность встречается только в месте, где сухожилие прикреплено к кости, в месте соединения швов на черепе, в линии перелома. Постепенно ретикулофиброзная ткань заменяется пластинчатой.

    Имеет эта костная ткань особое строение, ее клетки расположены неупорядоченно в межклеточном веществе. Коллагеновые волокна, являющиеся разновидностью соединительной ткани, мощные, плохо минерализованы, направление имеют различное. Ретикулофиброзная кость имеет большую плотность, но клетки не имеют ориентации по соединительной ткани коллагеновых волокон.

    У взрослого

    Когда младенец вырос, его кость содержит в основном пластинчатую костную ткань. Эта разновидность интересна тем, что минерализованным межклеточным веществом образованы костные пластинки, имеющие толщину от 5 до 7 мкм. Любая пластина состоит из коллагеновых волокон соединительной ткани, расположенных параллельно, максимально близко, а также пропитанных кристаллами специального минерала – гидроксиаппатита.

    В соседних пластинах волокна соединительной ткани проходят под разным углом, это обеспечивает прочность, к примеру в бедре или челюсти. Лакуны или альвеолы между пластинами в упорядоченном порядке содержат клетки кости – остеоциты. Их отростки по канальцам проникают в рядом расположенные пластины, за счет чего образуются межклеточные контакты соседних клеток.

    Есть некоторые системы пластинок:

    • окружающие (наружные или расположенные изнутри);
    • концентрические (входящие в структуру остеона);
    • вставочные (остаток разрушающегося остеона).

    Строение кортикального, губчатого слоя

    В основе этого слоя находятся минеральные соли, в челюсти именно сюда через альвеолы вживляются импланты. Базальный слой расположен наиболее глубоко, является наиболее прочным, есть в челюсти много перегородок, пронизанных капиллярами, их же немного.

    В центральном отделе находится губчатое вещество, в его строении есть некоторые тонкости. Построено оно из перегородок, капилляров. За счет перегородок кость имеет плотность, а по капиллярам она получает кровь. Их функции в челюсти заключаются в питании зубов, насыщении кислородом.

    В костях организма, в том числе челюсти, которая содержит альвеолы, есть компактное, а потом следующее за ним губчатое вещество. Обе эти составляющие имеют несколько разное строение, но образованы тканью пластинчатого типа. Компактное вещество расположено снаружи, к нему идет прикрепление мышечной, хрящевой или соединительной ткани. Его функции сводятся к тому, чтобы придать кости плотность, как, к примеру, на челюсти, альвеолы которой несут нагрузку от пережевывания пищи.

    Губчатое вещество расположено внутри любой кости, в том числе челюсти, в нижней части его содержат альвеолы. Его функции сводятся к дополнительному укреплению кости, в придании ей пластичности, эта часть является вместилищем костного мозга, который продуцирует клетки крови.

    Немного фактов

    Всего у человека содержится от 208 до 214 костей, которые состоят наполовину из неорганической составляющей, четверть приходится на органические вещества, а еще четверть - на воду. Все это связано между собой соединительной тканью, коллагеновыми волокнами и протеогликанами.

    В составе кости есть органическая составляющая, как в мышечной, соединительной или хрящевой ткани, всего от 20 до 40%. Доля неорганических минералов занимает от 50 до 70%, клеточные элементы содержатся от 5 до 10%, а жиры – 3%.

    Вес скелета человека составляет в среднем 5 кг, много зависит от возраста, половой принадлежности, количества соединительной ткани, строения тела и показателей роста. Количество кортикальной кости составляет в среднем 4 кг, это составляет 80%. Губчатое вещество трубчатых костей, челюсти и других весит где-то килограмм, что составляет 20%. Объем скелета равняется 1,4 литра.

    Кость в скелете человека представляет собой отдельный орган, который может иметь свои определенные проблемы. Именно в костях часто всего случаются травмы, которые в зависимости от типа имеют различные сроки заживления. Если смотреть на кость невооруженным взглядом, то становится понятно, что каждая из них отличается по своей форме. Это связано с тем, какие функции она выполняет, какая нагрузка на нее воздействует, сколько мышц прикрепляется.

    Кости позволяют человеку перемещаться в пространстве, они являются защитой для внутренних органов. И чем более важен орган, тем сильнее он окружен костями. С возрастом способность к восстановлению снижается и перелом срастется медленнее, клетки теряют способность к быстрому делению. Это доказывают микроскопические исследования, а также свойства костной ткани. Снижается степень минерализации коллагеновых волокон, поэтому травмы протекают длительнее.

    Является основной опорной тканью и структурным материалом для костей, т. е. для скелета. Полностью дифференцированная кость является самым прочным материалом организма, за исключением зубной эмали. Она очень устойчива к сжатию и растяжению и исключительно устойчива к деформациям. Поверхность кости (за исключением сочлененных поверхностей) покрыта оболочкой (надкостницей), которая обеспечивает заживление кости после переломов.

    Костные клетки и межклеточное вещество

    Костные клетки (остеоциты) соединяются между собой длинными отростками и со всех сторон окружены основным веществом кости (внеклеточным матриксом). По составу и строению основное вещество кости своеобразно. Внеклеточный матрикс заполнен коллагеновыми волокнами, расположенными в основном веществе, богатом неорганическими солями (соли кальция, в первую очередь фосфат и карбонат).

    Он содержит 20-25% воды, 25-30% органических веществ и 50% различных неорганических соединений. Минеральные вещества кости находятся в кристаллической форме, таким образом обеспечивая ее высокую механическую прочность.

    Благодаря хорошему кровоснабжению, которое благоприятствует усиленному обмену, кость обладает биологической пластичностью. Жесткий и крайне прочный материал кости представляет собой живую ткань, которая способна легко приспосабливаться к изменению статических нагрузок, в том числе при изменении их направления. Отчетливых границ между органическими и минеральными компонентами кости не существует, и поэтому их присутствие может быть установлено лишь при микроскопическом исследовании. При сжигании кость сохраняет только минеральную основу и становится хрупкой. Если кость поместить в кислоту, то остаются лишь органические вещества, и она становится гибкой, как резина.

    Строение трубчатой кости

    Строение кости особенно наглядно видно на продольном распиле длинной кости. Различают плотный наружный слой (substantia соmpacta, compacts, компактное вещество) и внутренний (губчатый) слой (substancia spongiosa, spongiosa). В то время как плотный наружный слой характерен для длинных костей и особенно заметен на теле кости (диафизе), губчатый слой в основном находится внутри ее концов (эпифизов).

    Такая «облегченная конструкция» обеспечивает прочность кости при минимальном расходе материала. Кость адаптируется к возникающим нагрузкам посредством ориентации костных перекладин (трабекул). Трабекулы располагаются по линиям сжатия и растяжения, возникающим при нагрузке. Пространство между трабекулами в губчатых костях заполнено красным костным мозгом, обеспечивающим кроветворение. Белый костный мозг (жировой мозг) в основном находится в полости диафизов.

    У длинных костей наружный слой обладает ламеллярной (пластинчатой) структурой. Поэтому кости также называются ламеллярными. Архитектура ламеллярной сети (остеон, или гаверсова система) хорошо видна на спилах. В центре каждого остеона проходит кровеносный сосуд, через который в кость из крови поставляются питательные вещества.

    Вокруг него группируются остеоциты и внеклеточный матрикс. Остеоциты всегда располагаются между пластинками, в которых находятся спирализованные коллагеновые фибриллы. Клетки соединены друг с другом посредством отростков, проходящих через мельчайшие костные канальцы (каналикулы). Через эти канальцы из внутренних кровеносных сосудов поступают питательные вещества. При развитии остеона клетки, образующие кость (остеобласты), в больших количествах начинают поступать из внутренней части кости, образуя наружную пластинку остеона. На эту пластинку накладываются коллагеновые фибриллы, которые спирализуются. Между фибриллами упорядоченно располагаются кристаллы неорганических солей.

    Затем с внутренней стороны образуется следующая пластинка, в которой коллагеновые фибриллы располагаются перпендикулярно фибриллам первой пластинки. Процесс продолжается до тех пор, пока в центре останется только место для так называемого гаверсова канала, через который проходит кровеносный сосуд. Также в канале находится небольшое количество соединительной ткани. Зрелый остеон достигает около 1 см в длину и состоит из 10-20 цилиндрических пластинок, вставленных одна в другую. Костные клетки как бы замурованы между пластинками и соединяются с соседними клетками посредством длинных тончайших отростков. Остеоны связаны друг с другом каналами (фолькмановы каналы), через которые ответвления сосудов проходят в гаверсовы каналы.

    Губчатые кости также обладают пластинчатой структурой, однако в этом случае пластинки расположены слоями, как в листе фанеры. Поскольку клетки губчатой кости также обладают высокой метаболической активностью и нуждаются в питательных веществах, пластинки в этом случае тонкие (около 0,5 мм). Связано это с тем, что обмен питательными веществами между клетками и костным мозгом происходит исключительно за счет диффузии.

    На протяжении жизни организма остеоны плотного слоя и пластинки губчатых костей могут хорошо приспосабливаться к изменениям статических нагрузок (например, к переломам). При этом в плотном и губчатом веществе старые ламеллярные структуры подвергаются разрушению, и возникают новые. Пластинки разрушаются специальными клетками остеокластами, а остеоны, находящиеся в процессе обновления, называются интерстициальными пластинками.

    Развитие костной ткани

    На первой стадии дифференцировки кости человека пластинчатая ткань не образуется. Вместо этого возникает ретикулофиброзная (грубоволокнистая) кость. Это происходит в эмбриональном периоде, а также при заживлении переломов. В грубоволокнистой кости сосуды и коллагеновые волокна располагаются неупорядоченно, чем она напоминает прочную, богатую волокнами соединительную ткань. Грубоволокнистая кость может образоваться двумя путями.

    1. Непосредственно из мезенхимы развивается мембранная кость. Этот тип окостенения называется интрамембранной оссификацией или десмальным окостенением (прямой путь).

    2. Вначале в мезенхиме образуется хрящевой зачаток, который затем превращается в кость (эндохондральная кость). Процесс называется эндохондральным или непрямым окостенением.

    Приспосабливаясь к нуждам растущего организма, развивающиеся кости постоянно меняют формы. Пластинчатые кости также изменяются в соответствии с функциональной нагрузкой, например, по мере увеличения веса тела.

    Развитие длинных костей

    Большинство костей развивается из хрящевого зачатка по непрямому пути. Лишь некоторые кости (черепа и ключицы) образуются путем интрамембранной оссификации. Однако части длинных костей могут образовываться по прямому пути даже в том случае, если хрящ уже заложен, например, в виде перихондральной костной манжетки, за счет которой происходит утолщение кости (перихондральная оссификация).

    Внутри кости ткань закладывается по непрямому пути, причем вначале хрящевые клетки удаляются хондрокластами, а затем замещаются за счет хондральной оссификации. На границе диафиза и эпифиза развивается эпифизарная пластинка (хрящ). В этом месте кость начинает расти в длину за счет деления хрящевых клеток. Деление продолжается до остановки роста. Поскольку эпифизарная хрящевая пластинка не содержит кальция, она не видна на рентгеновском снимке. Рост кости в пределах эпифизов (центры оссификации) начинается лишь с момента рождения. Многие центры оссификации развиваются только в первые годы жизни. В местах присоединения мышц к костям (апофизы) образуются специальные центры оссификации.

    Различия между костью и хрящом

    Клетки аваскулярной кости образуют плотное вещество, выполняющее транспортные функции. Такая кость хорошо регенерирует и постоянно адаптируется к изменению статических условий. В аваскулярном хряще клетки изолированы друг от друга и от источников питательных веществ. По сравнению с костью хрящ в меньшей степени способен к регенерации и обладает небольшими адаптационными возможностями.

    Понравилась статья? Поделитесь ей
    Наверх