Существует ли шаровая молния? Что делать при встрече с шаровой молнией.

Одним из самых удивительных и опасных явлений природы является шаровая молния. Как себя вести и что следует делать при встрече с ней, вы узнаете из этой статьи.

Что такое шаровая молния

Удивительно, но современная наука затрудняется ответить на этот вопрос. К сожалению, еще никто не смог проанализировать это природное явление с помощью точных научных приборов. Все попытки ученых воссоздать его в лабораторных условиях также потерпели неудачу. Несмотря на множество исторических данных и рассказов очевидцев, некоторые исследователи и вовсе отрицают само существование этого феномена.

Те, кому посчастливилось остаться в живых после встречи с электрическим шаром, дают противоречивые показания. Они утверждают, что видели сферу от 10 до 20 см в диаметре, но описывают ее по-разному. По одной версии, шаровая молния почти прозрачна, сквозь нее даже угадываются контуры окружающих предметов. По другой, ее цвет варьируется от белого до красного. Кто-то рассказывает, что чувствовал исходящий от молнии жар. Другие не замечали от нее никакого тепла, даже находясь в непосредственной близости.

Китайским ученым повезло зафиксировать шаровую молнию с помощью спектрометров. Хотя это мгновение и длилось полторы секунды, исследователи смогли сделать вывод о ее отличиях от обычных молний.

Где появляется шаровая молния

Как себя вести при встрече с ней, ведь огненный шар может появиться где угодно. Обстоятельства его образования сильно отличаются и трудно найти определенную закономерность. Большинство думают, что встретить молнию можно только во время или после грозы. Однако существует масса свидетельств о том, что она появлялась и в сухую безоблачную погоду. Также невозможно предсказать место, где может образоваться электрический шар. Были случаи, когда он возникал из сети напряжения, ствола дерева и даже из стены жилого дома. Очевидцы видели, как молния появлялась сама по себе, встречали ее на открытой местности и внутри помещения. Также в литературе описаны случаи, когда после удара обычной возникала шаровая молния.

Как себя вести

Если вам «посчастливилось» встретиться с огненным шаром на открытой местности, вы должны придерживаться основных правил поведения в этой экстремальной ситуации.

  • Постарайтесь медленно удалиться от опасного места на значительное расстояние. Не поворачивайтесь к молнии спиной и не пытайтесь от нее убежать.
  • Если она близко и движется к вам, замрите, вытяните вперед руки и затаите дыхание. Через несколько секунд или минут шар обойдет вас и исчезнет.
  • Ни в коем случае не бросайте в него никакие предметы, так как при столкновении с чем-либо молния взрывается.

Шаровая молния: как спастись, если она появилась в доме?

Этот сюжет наиболее страшен, так как неподготовленный человек может запаниковать и совершить фатальную ошибку. Помните, что электрическая сфера реагирует на любое движение воздуха. Поэтому самый универсальный совет заключается в рекомендации сохранять неподвижность и спокойствие. Что еще можно сделать, если в квартиру залетела шаровая молния?

  • Что делать, если она оказалась около вашего лица? Подуйте на шар, и он отлетит в сторону.
  • Не прикасайтесь к железным предметам.
  • Замрите, не совершайте резких движений и не пытайтесь спастись бегством.
  • Если рядом находится вход в соседнее помещение, то попробуйте укрыться в нем. Но не поворачивайтесь к молнии спиной и постарайтесь двигаться как можно медленнее.
  • Не пытайтесь отогнать ее каким-либо предметом, иначе вы рискуете спровоцировать сильный взрыв. В этом случае вам грозят такие серьезные последствия как остановка сердца ожоги, травмы и потеря сознания.

Как помочь пострадавшему

Помните, что молния может нанести очень серьезную травму или вообще лишить жизни. Если вы увидели, что человек ранен ее ударом, то срочно примите меры - перенесите его в другое место и не бойтесь, так как заряда в его теле уже не останется. Положите его на пол, укутайте и вызывайте «скорую». В случае остановки сердца делайте ему искусственное дыхание до приезда врачей. Если человек пострадал не сильно, положите ему на голову мокрое полотенце, дайте две таблетки анальгина и успокаивающие капли.

Как уберечь себя

Как уберечься от шаровой молнии? Прежде всего необходимо предпринять действия, которые обезопасят вас во время обычной грозы. Помните, что в большинстве случаев люди страдают от электрического удара, находясь на природе или в сельской местности.

  • Как спастись от шаровой молнии в лесу? Не прячьтесь под одинокими деревьями. Постарайтесь найти невысокую рощу или подлесок. Помните, что молния редко бьет в хвойные деревья и березу.
  • Не держите над головой металлические предметы (вилы, лопаты, ружья, удочки и зонты).
  • Не прячьтесь в стог сена и не ложитесь на землю - лучше опуститесь на корточки.
  • Если гроза застала вас в машине, остановитесь и не трогайте металлические предметы. Не забудьте опустить антенну и отъехать от высоких деревьев. Остановитесь у обочины и не заезжайте на заправочную станцию.
  • Помните, что довольно часто гроза идет против ветра. Точно так же движется и шаровая молния.
  • Как себя вести в доме и стоит ли беспокоиться, если вы находитесь под крышей? К сожалению, громоотвод и другие приспособления не способны вам помочь.
  • Если вы находитесь в степи, то присядьте на корточки, постарайтесь не возвышаться над окружающими предметами. Можно укрыться в канаве, но покиньте ее сразу же, как только она начнет заполняться водой.
  • Если вы плывете в лодке, то ни в коем случае не вставайте. Постарайтесь как можно быстрее добраться до берега и отойдите от воды на безопасное расстояние.

  • Снимите с себя украшения и отложите подальше.
  • Отключите мобильник. Если он сработает, то к сигналу может притянуться шаровая молния.
  • Как спастись от грозы, если вы на даче? Закройте окна и дымоход. Пока не известно, является ли стекло преградой для молнии. Однако замечено, что она легко просачивается в любые щели, розетки или электроприборы.
  • Если вы дома, то закройте окна и выключите электроприборы, не касайтесь ничего металлического. Постарайтесь держаться подальше от розеток. Не звоните по телефону и отключите все внешние антенны.

Шаровая молния – красивый миф или ? Тысячи людей по всему миру утверждают, что лично видели его – светящийся, приблизительно сферический шар света. Как правило, этот феномен отмечают во время грозы, но подробности наблюдений очень сильно различаются. Размер огненных шаров составляет от нескольких сантиметров до метра и более. Они могут быть красными, синими, желтыми, белыми или даже зелеными. Время их существования – от нескольких секунд до нескольких минут. Они бесследно исчезают или взрываются, создавая разрушения и причиняя вред. Что такое шаровая молния и что делать при встрече с ней?

Характеристики природного явления

Они могут блуждать над землёй или спускаться c неба, висеть неподвижно или лететь с внушительной скоростью, излучать жар или казаться совершенно холодными. Есть свидетельства о шаровых молниях, появлявшихся в летящих самолётах и путешествовавших над головами ошеломлённых пассажиров. Некоторые очевидцы даже утверждают, что сияющие шары двигаются и ведут себя подобно живым существам. Иногда держатся поодаль, порой, словно с любопытством кружат вокруг, а часто и «нападают».

Соприкосновение с загадочным шаром может быть чревато ожогом или даже смертью. Если гроза бушует за окном, может ли шаровая молния пройти через стекло? Да, и даже сквозь стену, как говорят многочисленные свидетели подобных происшествий. Поэтому неудивительно, что люди задаются закономерным вопросом: если действительно есть в природе шаровая молния, как себя вести при ней и обезопасить себя?

Именитые философы и ученые, такие как Луций Сенека, Нильс Бор и Пётр Капица внимательно изучали феномен шаровой молнии. Современные физики, долгое время сомневавшиеся в достоверности этого удивительного явления, теперь пытаются сформулировать правдоподобное объяснение его существования, уже не вызывающего сомнений. Вот только получить внятные ответы на накопившиеся вопросы пока не удалось.

Что из себя представляет шаровая молния и что нужно делать при встрече с ней? Почему она движется по непредсказуемым траекториям и «ведёт себя» так странно? Какой источник энергии поддерживает её? В каких случаях она представляет угрозу для людей, а в каких – безвредна?

Что делать, если залетела шаровая молния?

Выдвинуто множество научных и любительских версий о физике и происхождении странного явления, но пока что ни одна из них не подтверждена. В лаборатории получить шаровую молнию тоже ещё не удалось. На сегодняшний день нам остаётся только гадать, что представляет из себя эта таинственная светящаяся сфера.

Все, что остается людям, это соблюдать все рекомендации, касающиеся возможной встречи с феноменом. Они сводятся к максимальному проявлению осторожности.:

Чтобы снизить с опасным феноменом, во время грозы нужно держать окна и двери в доме закрытыми. Может ли шаровая молния пройти через оконное стекло? К сожалению, да. Однако считается, что в основном она движется в потоках воздуха и «любит» сквозняки, поэтому не стоит их создавать.

Страх человека чаще всего исходит от незнания. Мало кто боится обычной молнии - искрового электрического разряда - и все знают, как вести себя во время грозы. Но что такое шаровая молния, опасна ли она, и что делать, если вы столкнулись с этим явлением?


Какие бывают шаровые молнии?

Узнать шаровую молнию очень легко, несмотря на разнообразие ее видов. Обычно она имеет, как можно легко догадаться, форму шара, светящегося, как лампочка на 60-100 Ватт. Гораздо реже встречаются молнии похожие на грушу, гриб или каплю, или такой экзотической формы как блин, бублик или линза. Зато разнообразие цветовой гаммы просто поражает: от прозрачного до черного, но лидируют все же оттенки желтого, оранжевого и красного. Цвет может быть неоднородным, а иногда шаровые молнии меняют его, как хамелеон.


Говорить о постоянном размере плазменного шара тоже не приходится, он колеблется от нескольких сантиметров до нескольких метров. Но обычно люди сталкиваются с шаровыми молниями диаметром 10-20 сантиметров.

Хуже всего в описании молний дело обстоит с их температурой и массой. По данным ученых, температура может быть в пределах от 100 до 1000 оС. Но при этом люди, сталкивавшиеся с шаровыми молниями на расстоянии руки, крайне редко отмечали хоть какое-то тепло, исходившее от них, хотя по логике, они должны были получить ожоги. Такая же загадка и с массой: какого молния не была размера, она весит не более 5-7 грамм.

Если вы когда-нибудь издалека видели объект, похожий на то, что описал МирСоветов, поздравляем - это, скорее всего, и была шаровая молния.

Поведение шаровых молний

Поведение шаровых молний непредсказуемо. Они относятся к явлениям, которые появляются когда хотят, где хотят и творят, что хотят. Так, раньше считалось, что шаровые молнии рождаются только во время гроз и всегда сопровождают линейные (обычные) молнии. Однако постепенно выяснилось, что они могут появиться и в солнечную ясную погоду. Полагали, что молнии как бы «притягиваются» к местам высокого напряжения с магнитным полем - электрическим проводам. Но были зафиксированы случаи, когда те появлялись фактически посреди чистого поля…


Шаровые молнии непонятным образом исторгаются из электрических розеток в доме и «просачиваются» сквозь малейшие щели в стенах и стекла, превращаясь в «сосиски» и затем снова принимая обычную свою форму. При этом не остается никаких оплавленных следов… Они то спокойно висят на одном месте на небольшом расстоянии от земли, то несутся куда-то со скоростью 8-10 метров в секунду. Встретив на своем пути человека или животное, молнии могут держаться от них вдалеке и вести себя мирно, могут любопытно кружить поблизости, а могут напасть и обжечь или убить, после чего или растаять, как ни в чем не бывало, или взорваться с ужасным грохотом. Однако, несмотря на частые рассказы о травмированных или убитых шаровой молнией, число их сравнительно невелико - всего 9 процентов. Чаще всего, молния, покружив по местности, исчезает, не причинив никакого вреда. Если она появилась в доме, то обычно обратно «просачивается» на улицу и только там тает.

Также зафиксировано много необъяснимых случаев, когда шаровые молнии «привязываются» к какому-то конкретному месту или человеку, и появляются регулярно. При этом по отношению к человеку они делятся на два вида - те, которые нападают на него в каждое свое появление и те, которые не причиняют вреда либо нападают на людей, находящихся поблизости. Существует еще одна загадка: шаровая молния, убив человека, совершенно безо всякого следа на теле, а труп долгое время не коченеет и не разлагается…

Некоторые ученые говорят, что молния просто «останавливает время» в организме.

Шаровая молния с научной точки зрения

Шаровая молния - явление уникальное и своеобразное. За историю человечества скопилось более 10 тысяч свидетельств о встречах с «разумными шарами». Однако до сих пор ученые не могут похвалиться большими достижениями в сфере исследования этих объектов. Существует масса разрозненных теорий о происхождении и «жизни» шаровых молний. Время от времени в лабораторных условиях получается создать объекты, по виду и свойствам похожие на шаровые молнии - плазмоиды. Тем не менее, стройной картины и логичного объяснения этому явлению никто предоставить так и не смог.

Наиболее известной и разработанной раньше остальных является теория академика П. Л. Капицы, которая объясняет появление шаровой молнии и ее некоторые особенности возникновением коротковолновых электромагнитных колебаний в пространстве между грозовыми тучами и земной поверхностью. Однако Капице так и не удалось объяснить природу тех самых коротковолновых колебаний. К тому же, как было замечено выше, что шаровые молнии не обязательно сопровождают обычные молнии и могут появляться в ясную погоду. Тем не менее, большинство других теорий основаны на выводах академика Капицы.

Отличные от теории Капицы гипотеза была создана Б. М. Смирновым, утверждающим, что ядро шаровой молнии - это ячеистая структура, обладающая прочным каркасом при малом весе, причем каркас создан из плазменных нитей.


Д. Тернер объясняет природу шаровых молний термохимическими эффектами, протекающими в насыщенном водяном паре при наличии достаточно сильного электрического поля.

Однако самой интересной считается теория новозеландских химиков Д. Абрахамсона и Д. Динниса. Они выяснили, что при ударе молнии в почву, содержащую силикаты и органический углерод, образуется клубок волокон кремния и карбида кремния. Эти волокна постепенно окисляются и начинают светиться. Так рождается «огненный» шар, разогретый до 1200-1400 °С, который медленно тает. Но если температура молнии зашкаливает, то она взрывается. Тем не менее, и эта стройная теория не подтверждает все случаи возникновения молний.

Для официальной науки шаровая молния по-прежнему продолжает оставаться загадкой. Может поэтому вокруг нее появляется столько околонаучных теорий и еще большее количество вымыслов.

Околонаучные теории о шаровой молнии

Мы не будем рассказывать здесь истории о демонах с горящими глазами, оставляющих за собой запах серы, адских псах и «огненных птицах», как иногда представляли шаровые молнии. Однако странное их поведение дает многим исследователям этого феномена предположить, что молнии «мыслят». Как минимум, шаровые молнии считаются приборами для исследования нашего мира. Как максимум - энергетическими сущностями, которые также собирают какие-то сведения о нашей планете и ее обитателях.


Косвенным подтверждением этих теорий может служить и тот факт, что любой сбор информации - это работа с энергией.
И необычное свойство молний исчезать в одном месте и появляться мгновенно в другом. Есть предположения, что одна и та же шаровая молния «ныряет» в определённую часть пространства - иного измерения, живущего по другим физическим законам, - и, сбросив информацию, появляется снова в нашем мире в новой точке. Да и действия молний относительно живых существ нашей планеты тоже осмысленны - одних они не трогают, к другим «прикасаются», а у некоторых просто вырывают кусочки плоти, словно на генетический анализ!

Легко объяснимо и частое появление шаровых молний во время гроз. Во время всплесков энергии - электрических разрядов - открываются порталы из параллельного измерения, и в наш мир попадают их сборщики информации о нашем мире…

Что делать при встрече с шаровой молнией?

Главное правило при появлении шаровой молнии - будь то в квартире или на улице - не паниковать и не делать резких движений. Никуда не бегите! Молнии очень восприимчивы к завихрениям воздуха, которые мы создаём при беге и прочих движениях и которые тянут ее за собой. Оторваться от шаровой молнии можно только на машине, но никак не своим ходом.

Постарайтесь тихо свернуть с пути молнии и держаться дальше от нее, но не поворачиваться к ней спиной. Если вы находитесь в квартире - подойдите к окну и откройте форточку. С большой долей вероятности молния вылетит наружу.


И, конечно же - никогда ничего не бросайте в шаровую молнию! Она может не просто исчезнуть, а взорваться, как мина, и тогда тяжелые последствия (ожоги, травмы, иногда потеря сознания и остановка сердца) неотвратимы.

Если же шаровая молния задела кого-то и человек потерял сознание, то его необходимо перенести в хорошо проветриваемое помещение, тепло укутать, сделать искусственное дыхание и обязательно вызвать скорую помощь.

Вообще же, технические средств защиты от шаровых молний как таковых пока не разработано. Единственный существующий сейчас «шаромолниеотвод» был разработан ведущим инженером Московского института теплотехники Б. Игнатовым. Шаромолниеотвод Игнатова запатентован, но создано подобных устройств – единицы, речи об активном внедрении его в жизнь пока не идет.

Поэтому - берегите себя, и если встретите шаровую молнию, не забывайте о рекомендациях.

Все знают, как следует вести себя во время сильной грозы, и почти никому не страшны обычные молнии. Но встречались ли вы с шаровыми молниями? Что это за явление? Насколько они опасны?

Внешний облик

Шаровые молнии предстают перед нами в разном виде, однако узнать её всегда довольно легко. Чаще всего в природе встречаются шаровые молнии в виде светящего шара. Но бывает, что они принимают форму гриба, груши, капли. Встречались и такие экзотические шаровые молнии, которые принимали форму бублика или блина.

Цветовая гамма шаровых молний поражает своим разнообразием: от черного до прозрачного, однако всё же лидируют яркие насыщенные оранжевые, желтые и красные цвета. Более того, иногда трудно разгадать цвет шаровой молнии, потому, что она меняет его как хамелеон.

Размеры их тоже могут быть совершенно разными – от нескольких сантиметров до нескольких метров. Но чаще всего можно увидеть плазменные шары диаметром около 20 см.

Ученые утверждают, что температура может быть от 100 до 1000 градусов. Загадка явления состоит в том, что находясь рядом с молнией на расстоянии вытянутой руки, люди не ощущали никакого исходящего от молнии тепла, хотя по логике, должны были получать ожоги.

Поведение

Поведение шаровых молний не поддается никакому научному обоснованию. Они непонятным образом просачиваются сквозь розетки в домах, пробираются через малейшие щели, меняя при этом свою форму, в зависимости от размеров щелки. Предсказать путь шаровой молнии невозможно.

Они могут спокойно висеть на одном месте в нескольких метрах от земли, а могут нестись куда-то со скоростью 10 м/с. Находясь рядом с животным или человеком, они могут любопытно кружиться вокруг и не причинять никакого вреда, а могут напасть и обжечь до смерти.

Еще один интересный факт – тела людей, погибших от удара шаровой молнии, еще очень долгое время не разлагаются, и на них не находят никаких следов. Некоторые ученые считают, что молния останавливает время в организме.

Научные и околонаучные обоснования

В науке существует огромное количество гипотез о происхождении и деятельности шаровых молний. В лабораториях удаётся создавать объекты, похожие на них – плазмоиды. Но никому еще не удавалось дать логичное объяснение этому явлению.

Ранее считалось, что обязательными условиями для возникновения шаровых молний является дождливая погода и наличие обычных линейных молний. Одни ученые объясняют появление молнии тем, что во время грозы между тучами и поверхностью земли возникают коротковолновые электромагнитные колебания. Однако когда шаровые молнии стали появляться даже в солнечную сухую погоду, это предположение развеялось.

Интерес представляет теория, разработанная новозеландскими учеными. Они провели эксперимент и выяснили, что когда обычная молния ударяется в почву, в которой содержатся силикаты и органический углерод, образуется в шар из волокон кремния и карбида кремния. При окислении этих волокон, шар начинает светиться и нагреваться. Но пока эта теория не нашла окончательного своего подтверждения.

Отсутствие научного обоснования появлению шаровых молний дает толчок к развитию околонаучных теорий.

Итак, вымыслов и догадок о шаровых молниях невероятное множество. Кто-то считает их специальными приборами, предназначенными следить за жизнью на Земле. Кто-то утверждает, что молнии и есть внеземные существа.

Советы: что делать при встрече с шаровой молнией.

1. Главное правило: обнаружив шаровую молнию – не делать резких движений. Поток воздуха может потянуть её за собой, поэтому не бегите! Скрыться от шаровой молнии еще можно на автомобиле, но только не своими силами.

2. Не поворачивайтесь к молнии спиной, постарайтесь уйти с её пути и держаться как можно дальше от неё.

3. Находясь в квартире, откройте окно. Как правило, она вылетит наружу.

4. Нельзя ничем кидаться в шаровую молнию, она может взорваться, как бомба, и тогда ожоги неизбежны.

5. Если молния все же задела человека, который впоследствии потерял сознание, необходимо вынести его на воздух, укутать в одеяло и сразу сделать искусственное дыхание перед приездом скорой помощи.

Помните, что в повседневную жизнь еще не введены приборы для отвода шаровой молнии, поэтому будьте осторожны и следуйте правилам безопасности.

Как это нередко бывает, систематическое изучение шаровых молний началось с отрицания их существования: в начале XIX века все известные к тому времени разрозненные наблюдения были признаны либо мистикой, либо в лучшем случае оптической иллюзией.

Но уже в 1838 году в «Ежегоднике» французского бюро географических долгот был опубликован обзор, составленный знаменитым астрономом и физиком Домиником Франсуа Араго.

Впоследствии он стал инициатором опытов Физо и Фуко по измерению скорости света, а также работ, приведших Леверье к открытию Нептуна.

Основываясь на известных тогда описаниях шаровых молний, Араго пришел к выводу, что многие из этих наблюдений нельзя считать иллюзией.

За 137 лет, прошедших с момента выхода в свет обзора Араго, появились новые свидетельства очевидцев, фотографии. Были созданы десятки теорий, экстравагантных и остроумных, которые объясняли некоторые известные свойства шаровой молнии, и таких, которые не выдерживали элементарной критики.

Фарадей, Кельвин, Аррениус, советские физики Я. И. Френкель и П. Л. Капица, многие известные химики, наконец, специалисты американской Национальной комиссии по астронавтике и аэронавтике NASA пытались исследовать и объяснить этот интересный и грозный феномен. А шаровая молния и поныне продолжает во многом оставаться загадкой.

Трудно, наверное, найти явление, сведения о котором так противоречили бы друг другу. Основных причин две: это явление очень редкое, и многие наблюдения проводятся крайне не квалифицированно.

Достаточно сказать, что за шаровую молнию принимались крупные метеоры и даже птицы, к крыльям которых прилипала труха гнилых, светящихся в темноте пней. И все-таки известно около тысячи достоверных наблюдений шаровой молнии, описанных в литературе.

Какие же факты должны связать ученые единой теорией, чтобы объяснить природу возникновения шаровой молнии? Какие ограничения накладывают наблюдения на нашу фантазию?

Первое, что нужно объяснить: почему шаровая молния возникает часто, если она возникает часто, или почему она возникает редко, если она возникает редко?

Пусть читателя не удивляет эта странная фраза — частота появления шаровой молнии все еще является спорным вопросом.

И еще нужно объяснить, почему шаровая молния (не зря же она так называется) действительно имеет форму, обычно близкую к шару.

И доказать, что она, вообще, имеет отношение к молниям, — надо сказать, не все теории связывают появление этого феномена с грозами — и не без оснований: иногда она возникает в безоблачную погоду как, впрочем, и другие грозовые явления, например, огни святого Эльма.

Здесь уместно вспомнить описание встречи с шаровой молнией, данное замечательным наблюдателем природы и ученым Владимиром Клавдиевичем Арсеньевым — известным исследователем дальневосточной тайги. Встреча эта произошла в горах Сихотэ-Алиня в ясную лунную ночь. Хотя многие параметры наблюдавшейся Арсеньевым молнии типичны, подобные случаи редки: обычно шаровые молнии возникают в грозу.

В 1966 году NASA распространила среди двух тысяч человек анкету, в первой части которой были заданы два вопроса: «Видели ли вы шаровую молнию?» и «Видели ли вы в непосредственной близости удар линейной молнии?»

Ответы дали возможность сравнить частоту наблюдения шаровой молнии с частотой наблюдения обычных молний. Результат оказался ошеломляющим: удар линейной молнии вблизи видели 409 человек из 2 тысяч, а шаровую молнию — два раза меньше. Нашелся даже счастливчик, встречавший шаровую молнию 8 раз,- еще одно косвенное доказательство того, что это совсем не такое редкое явление, как принято думать.

Анализ второй части анкеты подтвердил многие известные ранее факты: шаровая молния имеет в среднем диаметр около 20 см; светится не очень ярко; цвет чаще всего красный, оранжевый, белый.

Интересно, что даже наблюдатели, видевшие шаровую молнию близко, часто не ощущали ее теплового излучения, хотя при непосредственном прикосновении она обжигает.

Существует такая молния от нескольких секунд до минуты; может проникать в помещения через маленькие отверстия, восстанавливая затем свою форму. Многие наблюдатели сообщают, что она выбрасывает какие-то искры и вращается.

Обычно она парит на небольшом расстоянии от земли, хотя встречали ее и в облаках. Иногда шаровая молния спокойно исчезает, но иногда взрывается, вызывая заметные разрушения.

Уже перечисленных свойств достаточно, чтобы поставить исследователя в тупик.

Из какого вещества должна, например, состоять шаровая молния, если она не взлетает стремительно вверх, подобно воздушному шару братьев Монгольфье, наполненному дымом, хотя и нагрета, по крайней мере, до нескольких сотен градусов?

С температурой тоже не все ясно: судя по цвету свечения, температура молнии не меньше 8 000°К.

Один из наблюдателей, химик по специальности, знакомый с плазмой, оценил эту температуру в 13 000-16 000°К! Но фотометрование следа молнии, оставшегося на фотопленке, показало, что излучение выходит не только с ее поверхности, а и из всего объема.

Многие наблюдатели также сообщают, что молния полупрозрачна и через нее просвечивают контуры предметов. А это значит, что ее температура значительно ниже — не более 5 000 градусов, так как при большем нагреве слой газа толщиной в несколько сантиметров совершенно непрозрачен и излучает как абсолютно черное тело.

О том, что шаровая молния довольно «холодна», свидетельствует и сравнительно слабый тепловой эффект, производимый ею.

Шаровая молния несет большую энергию. В литературе, правда, часто встречаются заведомо завышенные оценки, но даже скромная реалистичная цифра — 105 джоулей — для молнии диаметром в 20 см весьма внушительна. Если бы такая энергия расходовалась только на световое излучение, она могла бы светиться много часов.

При взрыве шаровой молнии может развиться мощность в миллион киловатт, так как взрыв этот протекает очень быстро. Взрывы, правда, человек умеет устраивать и более мощные, но если сравнить со «спокойными» источниками энергии, то сравнение будет не в их пользу.

В частности, энергоемкость (энергия, отнесенная к единице массы) молнии значительно выше, чем у существующих химических аккумуляторов. Кстати, именно желание научиться аккумулировать сравнительно большую энергию в малом объеме и привлекло многих исследователей к изучению шаровой молнии. Насколько эти надежды могут оправдаться, говорить пока рано.

Сложность объяснения столь противоречивых и разнообразных свойств привела к тому, что существующие взгляды на природу этого явления исчерпали, кажется, все мыслимые возможности.

Некоторые ученые считают, что молния постоянно получает энергию извне. Например, П. Л. Капица предположил, что она возникает при поглощении мощного пучка дециметровых радиоволн, которые могут излучаться во время грозы.

Реально для образования ионизированного сгустка, каким является в этой гипотезе шаровая молния, необходимо существование стоячей волны электромагнитного излучения с очень большой напряженностью поля в пучностях.

Нужные условия могут осуществиться очень редко, так что, по мнению П. Л. Капицы, вероятность наблюдения шаровой молнии в заданном месте (то есть там, где расположился наблюдатель-специалист) практически равна нулю.

Иногда предполагают, что шаровая молния есть светящаяся часть канала, связывающего облако с землей, по которому течет большой ток. Образно говоря, ей отводится роль единственного видимого участка по каким-то причинам невидимой линейной молнии. Впервые эта гипотеза была высказана американцами М. Юманом и О. Финкельштейном, а в дальнейшем появилось несколько модификаций разработанной ими теории.

Общая трудность всех этих теорий в том, что они предполагают существование в течение длительного времени потоков энергии чрезвычайно высокой плотности и именно из-за этого обрекают шаровую молнию на «должность» чрезвычайно маловероятного явления.

Кроме того, в теории Юмана и Финкельштейна сложно объяснить форму молнии и ее наблюдаемые размеры — диаметр канала молнии обычно составляет около 3-5 см, а шаровые молнии встречаются и метрового диаметра.

Существует довольно много гипотез, предполагающих, что шаровая молния сама является источником энергии. Придуманы самые экзотические механизмы извлечения этой энергии.

В качестве примера такой экзотики можно привести идею Д. Эшби и К. Уайтхеда, согласно которой шаровая молния образуется при аннигиляции пылинок антивещества, попадающих в плотные слои атмосферы из космоса, а затем увлекаемых разрядом линейной молнии на землю.

Эту идею, может быть, можно было бы подкрепить теоретически, но, к сожалению, пока ни одной подходящей частицы антивещества обнаружено не было.

Чаще всего в качестве гипотетического источника энергии привлекаются различные химические и даже ядерные реакции. Но при этом трудно объяснить шаровую форму молнии — если реакции идут в газообразной среде, то диффузия и ветер приведут к выносу «грозового вещества» (термин Араго) из двадцатисантиметрового шара за считанные секунды и еще раньше деформируют его.

Наконец, нет ни одной реакции, о которой было бы известно, что она протекает в воздухе с нужным для объяснения шаровой молнии энерговыделением.

Многократно высказывалась такая точка зрения: шаровая молния аккумулирует энергию, выделяемую при ударе линейной молнии. Теорий, в основе которых лежит это предположение тоже немало, подробный обзор их можно найти в популярной книге С. Сингера «Природа шаровой молнии».

Эти теории, как, впрочем, и многие другие, содержат трудности и противоречия, которым уделено немалое внимание и в серьезной и в популярной литературе.

Кластерная гипотеза шаровой молнии

Расскажем теперь о сравнительно новой, так называемой кластерной гипотезе шаровой молнии, разрабатываемой в последние годы одним из авторов этой статьи.

Начнем с вопроса, почему же молния имеет форму шара? В общем виде ответить на этот вопрос несложно — должна существовать сила, способная удержать вместе частицы «грозового вещества».

Почему капля воды шарообразна? Такую форму придает ей поверхностное натяжение.

Поверхностное натяжение жидкости возникает из-за того, что ее частицы — атомы или молекулы — сильно взаимодействуют между собой, гораздо сильнее, чем с молекулами окружающего газа.

Поэтому, если частица оказывается вблизи границы раздела, то на нее начинает действовать сила, стремящаяся вернуть молекулу в глубину жидкости.

Средняя кинетическая энергия частиц жидкости примерно равна средней энергии их взаимодействия, поэтому молекулы жидкости и не разлетаются. В газах же кинетическая энергия частиц настолько превышает потенциальную энергию взаимодействия, что частицы оказываются практически свободными и о поверхностном натяжении говорить не приходится.

Но шаровая молния — газоподобное тело, а поверхностное натяжение у «грозового вещества», тем не менее, есть — отсюда и форма шара, которую чаще всего она имеет. Единственное вещество, которое могло бы иметь такие свойства — плазма, ионизированный газ.

Плазма состоит из положительных и отрицательных ионов и свободных электронов, то есть из частиц электрически заряженных. Энергия взаимодействия между ними гораздо больше, чем между атомами нейтрального газа, больше соответственно и поверхностное натяжение.

Однако при сравнительно низких температурах — скажем, при 1 000 градусов Кельвина — и при нормальном атмосферном давлении шаровая молния из плазмы могла бы существовать только тысячные доли секунды, так как ионы быстро рекомбинируют, то есть превращаются в нейтральные атомы и молекулы.

Это противоречит наблюдениям — шаровая молния живет дольше. При высоких температурах — 10-15 тысяч градусов — слишком большой становится кинетическая энергия частиц, и шаровая молния должна просто развалиться. Поэтому исследователям приходится использовать сильнодействующие средства, чтобы «продлить жизнь» шаровой молнии, сохранить ее хотя бы несколько десятков секунд.

В частности, П. Л. Капица ввел в свою модель мощную электромагнитную волну, способную постоянно порождать новую низкотемпературную плазму. Другим же исследователям, предполагающим, что молниевая плазма более горячая, пришлось придумывать, как бы удержать шар из этой плазмы, то есть решать задачу до сих пор не решенную, хотя и очень важную для многих областей физики и техники.

А что если пойти по другому пути — ввести в модель механизм, замедляющий рекомбинацию ионов? Попробуем использовать для этой цели воду. Вода — полярный растворитель. Ее молекулу можно грубо представить себе как палочку, один конец которой заряжен положительно, а другой — отрицательно.

К положительным ионам вода присоединяется отрицательным концом, а к отрицательным — положительным, образуя защитную прослойку — сольватную оболочку. Она может резко замедлить рекомбинацию. Ион вместе с сольватной оболочкой называется кластером.

Вот мы и подошли, наконец, к основным идеям кластерной теории: при разрядке линейной молнии происходит практически полная ионизация молекул, входящих в состав воздуха, в том числе и молекул воды.

Образовавшиеся ионы начинают быстро рекомбинировать, эта стадия занимает тысячные доли секунды. В какой-то момент нейтральных молекул воды становится больше, чем оставшихся ионов, и начинается процесс образования кластеров.

Он тоже длится, видимо, доли секунды и заканчивается образованием «грозового вещества» — похожего по своим свойствам на плазму и состоящего из ионизированных молекул воздуха и воды, окруженных сольватными оболочками.

Правда, пока все это только идея, и нужно посмотреть, может ли она объяснить многочисленные известные свойства шаровой молнии. Вспомним известную поговорку о том, что для рагу из зайца как минимум нужен заяц, и зададим себе вопрос: могут ли образовываться в воздухе кластеры? Ответ утешительный: да, могут.

Доказательство этого в буквальном смысле слова свалилось (было привезено) с неба. В конце 60-х годов с помощью геофизических ракет было проведено подробное исследование самого нижнего слоя ионосферы — слоя D , расположенного на высоте около 70 км. Оказалось, несмотря на то, что на такой высоте воды крайне мало, все ионы в слое D окружены сольватными оболочками, состоящими из нескольких молекул воды.

В кластерной теории предполагается, что температура шаровой молнии меньше 1000°К, поэтому от нее нет сильного теплового излучения. Электроны при такой температуре легко «прилипают» к атомам, образуя отрицательные ионы, и все свойства «молниевого вещества» определяются кластерами.

При этом плотность вещества молнии оказывается примерно равной плотности воздуха при нормальных атмосферных условиях, то есть молния может быть несколько тяжелее воздуха и опускаться вниз, может быть несколько легче воздуха и подниматься и, наконец, может находиться во взвешенном состоянии, если плотности «молниевого вещества» и воздуха равны.

Все эти случаи наблюдались в природе. Кстати, то, что молния опускается вниз, еще не значит, что она упадет на землю — прогрев под собой воздух, она может создать воздушную подушку, удерживающую ее на весу. Очевидно, поэтому парение — самый распространенный вид движения шаровой молнии.

Кластеры взаимодействуют между собой значительно сильнее, чем атомы нейтрального газа. Оценки показали, что возникающего поверхностного натяжения вполне достаточно, чтобы придать молнии шаровую форму.

Допустимое отклонение плотности быстро убывает с увеличением радиуса молнии. Так как вероятность точного совпадения плотности воздуха и вещества молнии мала, крупные молнии — больше метра в диаметре — встречаются крайне редко, маленькие же должны появляться чаще.

Но молнии размером меньше трех сантиметров тоже практически не наблюдаются. Почему? Для ответа на этот вопрос необходимо рассмотреть энергетический баланс шаровой молнии, выяснить, где в ней хранится энергия, сколько ее и на что она расходуется. Энергия шаровой молнии заключена, естественно, в кластерах. При рекомбинации отрицательного и положительного кластеров выделяется энергия от 2 до 10 электрон-вольт.

Обычно плазма теряет довольно много энергии в виде электромагнитного излучения — его появление связано с тем, что легкие электроны, двигаясь в поле ионов, приобретают очень большие ускорения.

Вещество молнии состоит из тяжелых частиц, ускорить их не так-то просто, поэтому электромагнитное поле излучается слабо и большая часть энергии выводится из молнии тепловым потоком с ее поверхности.

Тепловой поток пропорционален площади поверхности шаровой молнии, а запас энергии пропорционален объему. Поэтому маленькие молнии быстро теряют свои сравнительно небольшие запасы энергии, и, хотя они появляются гораздо чаще крупных, заметить их труднее: они слишком мало живут.

Так, молния диаметром в 1 см остывает за 0,25 секунд, а диаметром 20 см за 100 секунд. Эта последняя цифра примерно совпадает с максимальным наблюдаемым временем жизни шаровой молнии, но существенно превосходит среднее время ее жизни, равное нескольким секундам.

Наиболее реальный механизм «умирания» крупной молнии связан с потерей устойчивости ее границы. При рекомбинации пары кластеров образуется десяток легких частиц, что приводит при той же температуре к уменьшению плотности «грозового вещества» и нарушению условий существования молнии задолго до того, как исчерпается ее энергия.

Начинает развиваться поверхностная неустойчивость, молния выбрасывает куски своего вещества и как бы прыгает из стороны в сторону. Выброшенные куски почти мгновенно остывают, подобно маленьким молниям, и раздробленная большая молния заканчивает свое существование.

Но возможен и другой механизм ее распада. Если в силу каких-либо причин ухудшается отвод тепла, то молния начнет разогреваться. При этом увеличится число кластеров с малым количеством молекул воды в оболочке, они будут быстрее рекомбинировать, произойдет дальнейшее повышение температуры. В итоге — взрыв.

Почему светится шаровая молния

Какие же факты должны связать ученые единой теорией, чтобы объяснить природу шаровой молнии?

" data-medium-file="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?fit=300%2C212&ssl=1" data-large-file="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?fit=500%2C354&ssl=1" class="alignright size-medium wp-image-603" style="margin: 10px;" title="Природа шаровой молнии" src="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?resize=300%2C212&ssl=1" alt="Природа шаровой молнии" width="300" height="212" srcset="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?resize=300%2C212&ssl=1 300w, https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?w=500&ssl=1 500w" sizes="(max-width: 300px) 100vw, 300px" data-recalc-dims="1">Существует шаровая молния от нескольких секунд до минуты; может проникать в помещения через маленькие отверстия, восстанавливая затем свою форму

" data-medium-file="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?fit=300%2C224&ssl=1" data-large-file="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?fit=350%2C262&ssl=1" class="alignright size-medium wp-image-605 jetpack-lazy-image" style="margin: 10px;" title="Шаровая молния фото" src="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&ssl=1" alt="Шаровая молния фото" width="300" height="224" data-recalc-dims="1" data-lazy-srcset="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&ssl=1 300w, https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?w=350&ssl=1 350w" data-lazy-sizes="(max-width: 300px) 100vw, 300px" data-lazy-src="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&is-pending-load=1#038;ssl=1" srcset=""> Остановимся еще на одной загадке шаровой молнии: если ее температура невелика (в кластерной теории считается, что температура шаровой молнии около 1000°К), то почему же тогда она светится? Оказывается, и это можно объяснить.

При рекомбинации кластеров выделившееся тепло быстро распределяется между более холодными молекулами.

Но на какой-то момент температура «объемчика» вблизи рекомбинировавших частиц может превышать среднюю температуру вещества молнии более чем в 10 раз.

Вот этот «объемчик» и светится как газ, нагретый до 10 000-15 000 градусов. Таких «горячих точек» сравнительно мало, поэтому вещество шаровой молнии остается полупрозрачным.

Ясно, что с точки зрения кластерной теории шаровые молнии могут появляться часто. Для образования молнии диаметром в 20 см нужно всего несколько граммов воды, а ее во время грозы обычно предостаточно. Вода чаще всего распылена в воздухе, ну а в крайнем случае шаровая молния может «найти» ее для себя на поверхности земли.

Кстати, так как электроны очень подвижны, то при образовании молнии часть их может «потеряться», шаровая молния в целом окажется заряженной (положительно), и ее движение будет определяться распределением электрического поля.

Остаточный электрический заряд позволяет объяснить такие интересные свойства шаровой молнии, как ее способность двигаться против ветра, притягиваться к предметам и висеть над высокими местами.

Цвет шаровой молнии определяется не только энергией сольватных оболочек и температурой горячих «объемчиков», но и химическим составом ее вещества. Известно, что если при попадании линейной молнии в медные провода появляется шаровая молния, то она часто бывает окрашена в голубой или зеленый цвет — обычные «цвета» ионов меди.

Вполне возможно, что и возбужденные атомы металлов тоже могут образовывать кластеры. Появлением таких «металлических» кластеров можно было бы объяснить некоторые эксперименты с электрическими разрядами в результате которых появлялись светящиеся шары, похожие на шаровую молнию.

Из сказанного может создаться впечатление, что благодаря кластерной теории проблема шаровой молнии получила, наконец, свое окончательное разрешение. Но это не совсем так.

Несмотря на то что за кластерной теорией стоят вычисления, гидродинамические расчеты устойчивости, с её помощью удалось, по-видимому, понять многие свойства шаровых молний, было бы ошибкой сказать, что загадки шаровой молнии больше не существует.

В подтверждение один лишь штрих, одна деталь. В своем рассказе В. К. Арсеньев упоминает о тоненьком хвостике, протянувшемся от шаровой молнии. Пока мы не можем объяснить ни причину его возникновения, ни даже что это такое…

Как уже говорилось, в литературе описано около тысячи достоверных наблюдений шаровой молнии. Это конечно, не очень много. Очевидно, что каждое новое наблюдение при тщательном его анализе позволяет получить интересную информацию о свойствах шаровой молнии, помогает в проверке справедливости той или иной теории.

Поэтому очень важно, чтобы как можно больше наблюдений стало достоянием исследователей и сами наблюдатели активно участвовали в изучении шаровой молнии. Именно на это направлен эксперимент «Шаровая молния», о котором будет рассказано дальше.

Понравилась статья? Поделитесь ей
Наверх