Повышающий DC-DC преобразователь. Принцип работы

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 1), повышающие (рис. 2) и инвертирующие (рис. 3).

Общими для всех этих видов преобразователей являются пять элементов :

  1. источник питания,
  2. ключевой коммутирующий элемент,
  3. индуктивный накопитель энергии (катушка индуктивности, дроссель),
  4. блокировочный диод,
  5. конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий импульсный преобразователь

Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 1. Принцип действия понижающего преобразователя напряжения.

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь

Повышающий импульсный преобразователь напряжения (рис. 2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки RH с параллельно подключенным конденсатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Рис. 2. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии.

Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.

Инвертирующий преобразователь импульсного типа

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.

Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Рис. 3. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.

Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Импульсные преобразователи и стабилизаторы

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Узлы и схемы импульсных преобразователей

Задающий генератор (рис. 4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 5, 6) на микросхеме КР1006ВИ1 работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепоч-ки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%.

Рис. 4. Схема задающего генератора для импульсных преобразователей напряжения.

Рис. 5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В.

Рис. 6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В.

Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 5, 6) составляет 140 мА .

В выпрямителе преобразователя (рис. 5, 6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 — R3.

Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226).

В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х структуры п-р-п — КТ815, КТ817 (рис. 4.5) и р-п-р — КТ814, КТ816 (рис. 6) и другие.

Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер — коллектор транзистора диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

Преобразователь с задающим генератором-мультивибратором

Для получения выходного напряжения величиной 30...80 В П. Беляцкий использовал преобразователь с задающим генератором на основе несимметричного мультивибратора с выходным каскадом, нагруженным на индуктивный накопитель энергии — катушку индуктивности (дроссель) L1 (рис. 7).

Рис. 7. Схема преобразователя напряжения с задающим генератором на основе несимметричного мультивибратора.

Устройство работоспособно в диапазоне питающих напряжений 1,0. ..1,5 В и имеет КПД до 75%. В схеме можно применить стандартный дроссель ДМ-0,4-125 или иной с индуктивностью 120.. .200 мкГн.

Вариант выполнения выходного каскада преобразователя напряжения показан на рис. 8. При подаче на вход каскада управляющих сигналов прямоугольной формы 7777-уровня (5 В) на выходе преобразователя при его питании от источника напряжением 12 В получено напряжение 250 В при токе нагрузки 3...5 мА (сопротивление нагрузки около 100 кОм). Индуктивность дросселя L1 — 1 мГн.

В качестве VT1 можно использовать отечественный транзистор, например, КТ604, КТ605, КТ704Б, КТ940А(Б), КТ969А и др.

Рис. 8. Вариант выполнения выходного каскада преобразователя напряжения.

Рис. 9. Схема выходного каскада преобразователя напряжения.

Аналогичная схема выходного каскада (рис. 9) позволила при питании от источника напряжением 28В и потребляемом токе 60 мА получить выходное напряжение 250 В при токе нагрузки 5 мА , Индуктивность дросселя — 600 мкГч. Частота управляющих импульсов — 1 кГц.

В зависимости от качества изготовления дросселя на выходе может быть получено напряжение 150...450 В при мощности около 1 Вт и КПД до 75%.

Преобразователь напряжения, выполненный на основе генератора импульсов на микросхеме DA1 КР1006ВИ1, усилителя на основе полевого транзистора VT1 и индуктивного накопителя энергии с выпрямителем и фильтром, показан на рис. 10.

На выходе преобразователя при напряжении питания и потребляемом токе 80...90 мА образуется напряжение 400...425 В . Следует отметить, что величина выходного напряжение не гарантирована — она существенно зависит от способа выполнения катушки индуктивности (дросселя) L1.

Рис. 10. Схема преобразователя напряжения с генератором импульсов на микросхеме КР1006ВИ1.

Для получения нужного напряжения проще всего экспериментально подобрать катушку индуктивности для достижения требуемого напряжения или использовать умножитель напряжения.

Схема двуполярного импульсного преобразователя

Для питания многих электронных устройств требуется источник двухполярного напряжения, обеспечивающий положительное и отрицательное напряжения питания. Схема, приведенная на рис. 11, содержит гораздо меньшее число компонентов, чем аналогичные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.

Рис. 11. Схема преобразователя с одним индуктивным элементом.

Схема преобразователя (рис. 11) использует новое сочетание основных компонентов и включает в себя генератор четырехфазных импульсов, катушку индуктивности и два транзисторных ключа.

Управляющие импульсы формирует D-триггер (DD1.1). В течение первой фазы импульсов катушка индуктивности L1 запасается энергией через транзисторные ключи VT1 и VT2. В течение второй фазы ключ VT2 размыкается, и энергия передается на шину положительного выходного напряжения.

Во время третьей фазы замыкаются оба ключа, в результате чего катушка индуктивности вновь накапливает энергию. При размыкании ключа VT1 во время заключительной фазы импульсов эта энергия передается на отрицательную шину питания. При поступлении на вход импульсов с частотой 8 кГц схема обеспечивает выходные напряжения ±12 В . На временной диаграмме (рис. 11, справа) показано формирование управляющих импульсов.

В схеме можно использовать транзисторы КТ315, КТ361.

Преобразователь напряжения (рис. 12) позволяет получить на выходе стабилизированное напряжение 30 В. Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.

Рис. 12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В.

На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц.

К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления.

Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.

Преобразователь напряжения с индуктивным накопителем энергии, позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 13.

Рис. 13. Схема преобразователя напряжения со стабилизацией.

Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.

Аналоги транзисторов: ВС237В — КТ342А, КТ3102; ВС307В — КТ3107И, BF459—КТ940А.

Понижающие и инвертирующие преобразователей напряжения

Два варианта — понижающего и инвертирующего преобразователей напряжения показаны на рис. 14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА , второй — позволяет получить напряжение отрицательной полярности (-19,4 В ) при таком же токе нагрузки. Выходной транзистор ѴТЗ должен быть установлен на радиатор.

Рис. 14. Схемы стабилизированных преобразователей напряжения.

Аналоги транзисторов: 2N2222 — КТЗ117А 2N4903 — КТ814.

Понижающий стабилизированный преобразователь напряжения

Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту потоку нагрузки, показан на рис. 15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА.

Рис. 15. Схема понижающего преобразователя напряжения.

При изменении сопротивления нагрузки на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%. Аналоги транзисторов: 2N1613 — КТ630Г, 2N2905 — КТ3107Е, КТ814.

Двуполярный инвертор напряжения

Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.

Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра С3 и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.

Рис. 16. Схема инвертора напряжения +15/-15 В.

Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%. Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем. В качестве L1 использован дроссель ДМ-0,2-200.

Инверторы на специализированных микросхемах

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения , используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

На рис. 17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Рис. 17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 В и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мВ.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12x8x3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части.

В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при UBX=15 В. Размах пульсаций напряжения на конденсаторах СЗ и С4 — 50 мВ.

Рис. 18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Рис. 19. Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5.

Дроссель L1 индуктивностью 220 мкГч намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5, Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя — 30 кГц при UBX=5 S; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12x8x3 М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7. Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГч. Диод VD1 во всех схемах (рис. 17 — 19) должен быть диодом Шотки.

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 20 показана возможность преобразования напряжения низкого уровня (4,5...5 6) в двухполярное выходное напряжение 12 (или 15 6) при токе нагрузки до 130 (или 100 мА).

Рис. 20. Схема преобразователя напряжения на микросхеме МАХ743.

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80...82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0...4,5 6) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765 . Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7...5,5 В.

Рис. 21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В.

Схема преобразователя, показанная на рис. 21, содержит незначительное количество внешних (навесных) деталей.

Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц.

Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В. соответственно.

Максимальный выходной ток преобразователя — 100 мА . Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5-6 и 300 мА при напряжении 3,3 В . КПД преобразователя — до 80%.

Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 6 и ниже).

Дроссель L1 выполняют на кольце К10x6x4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГч. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм.

Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГч.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня высокочастотных помех), VD1 — диод Шотки (1 N5818, 1 N5819, SR106, SR160 и др.).

Сетевой блок питания фирмы «Philips»

Преобразователь (сетевой блок питания фирмы «Philips», рис. 22) при входном напряжении 220 В обеспечивает выходное стабилизированное напряжение 12 В при мощности нагрузки 2 Вт.

Рис. 22. Схема сетевого блока питания фирмы «Philips».

Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.

Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.

Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, СЗ.

При этом от конденсатора С2 будет заряжаться конденсатор СЗ большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на СЗ — увеличиваться.

Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и СЗ не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора СЗ через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора СЗ через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.

Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.

Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1...2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.

Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.

Схемы устройств для преобразования энергии

Схемы устройств для преобразования энергии показаны на рис. 24 и 25. Они представляют собой понижающие преобразователи энергии с питанием от выпрямителей с гасящим конденсатором. Напряжение на выходе устройств стабилизировано.

Рис. 24. Схема понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

Рис. 25. Вариант схемы понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

В качестве динисторов VD4 можно использовать отечественные низковольтные аналоги — КН102А, Б. Как и предыдущее устройство (рис. 23), источники питания (рис. 24 и 25) имеют гальваническую связь с питающей сетью.

Преобразователь напряжения с импульсным накоплением энергии

В преобразователе напряжения С. Ф. Сиколенко с «импульсным накоплением энергии» (рис. 26) ключи К1 и К2 выполнены на транзисторах КТ630, система управления (СУ) — на микросхеме серии К564.

Рис. 26. Схема преобразователя напряжения с импульсным накоплением.

Накопительный конденсатор С1 — 47 мкФ. В качестве источника питания используется батарея напряжением 9 В. Выходное напряжение на сопротивлении нагрузки 1 кОм достигает 50 В. КПД составляет 80% и возрастает до 95% при использовании в качестве ключевых элементов К1 и К2 КМОП-структур типа RFLIN20L.

Импульсно-резонансный преобразователь

Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.

Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.

Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.

Входные напряжения до 61 В, выходные напряжения от 0.6 В, выходные токи до 4 А, возможность внешней синхронизации и настройки частоты, а также подстройки тока ограничения, подстройка времени плавного запуска, комплексные защиты нагрузки, широкий рабочий диапазон температур – все эти особенности современных источников питания достижимы при помощи новой линейки DC/DC-преобразователей производства .

В настоящий момент номенклатура микросхем импульсных регуляторов производства компании STMicro (рисунок 1) позволяет создавать источники питания (ИП) со входными напряжениями до 61 В и выходными токами до 4 А.

Задача преобразования напряжения не всегда проста. Каждое конкретное устройство предъявляет свои требования к регулятору напряжения. Иногда главную роль играет цена (потребительская электроника), габариты (портативная электроника), эффективность (устройства с батарейным питанием) или даже скорость разработки изделия. Эти требования зачастую противоречат друг другу. По этой причине не существует идеального и универсального преобразователя напряжения.

В настоящее время применяется несколько типов преобразователей: линейные (стабилизаторы напряжения), импульсные DC/DC-преобразователи, схемы с переносом заряда и даже источники питания на гальванических изоляторах.

Однако наиболее распространенными остаются линейные регуляторы напряжения и понижающие импульсные DC/DC-преобразователи. Основное отличие функционирования этих схем видно из названия. В первом случае силовой ключ работает в линейном режиме, во втором – в ключевом. Основные достоинства, недостатки и области применения этих схем приведены ниже.

Особенности работы линейного регулятора напряжения

Принцип работы линейного регулятора напряжения хорошо известен. Классический интегральный стабилизатор μA723 был разработан еще в 1967 году Р. Видларом. Несмотря на то, что электроника с тех пор ушла далеко вперед, принципы функционирования остались практически неизменными .

Стандартная схема линейного регулятора напряжения состоит из ряда основных элементов (рисунок 2): силового транзистора VT1, источника опорного напряжения (ИОН), схемы компенсационной обратной связи на операционном усилителе (ОУ). Современные регуляторы могут содержать дополнительные функциональные блоки: схемы защиты (от перегрева, от перегрузки по току), схемы управления питанием и др.

Принцип работы таких стабилизаторов достаточно прост. Схема обратной связи на ОУ сравнивает величину опорного напряжения с напряжением выходного делителя R1/R2. На выходе ОУ формируется рассогласование, определяющее напряжение «затвор-исток» силового транзистора VT1. Транзистор работает в линейном режиме: чем больше напряжение на выходе ОУ, тем меньше напряжение «затвор-исток», и тем больше сопротивление VT1.

Такая схема позволяет компенсировать все изменения входного напряжения. Действительно, предположим, что входное напряжение Uвх увеличилось. Это вызовет следующую цепочку изменений: Uвх увеличилось → Uвых увеличится → напряжение на делителе R1/R2 возрастет → выходное напряжение ОУ увеличится → напряжение «затвор-исток» уменьшится → сопротивление VT1 увеличится → Uвых уменьшится.

В результате при изменении входного напряжения выходное напряжение меняется незначительно.

При уменьшении выходного напряжения происходят обратные изменения значений напряжений.

Особенности работы понижающего DC/DC-преобразователя

Упрощенная схема классического понижающего DC/DC-преобразователя (преобразователь I типа, buck-converter, step-down converter) состоит из нескольких основных элементов (рисунок 3): силового транзистора VT1, схемы управления (СУ), фильтра (Lф-Cф), обратного диода VD1 .

В отличие от схемы линейного регулятора транзистор VT1 работает в ключевом режиме.

Цикл работы схемы состоит из двух фаз: фазы накачки и фазы разряда (рисунки 4…5).

В фазе накачки транзистор VT1 открыт и через него протекает ток (рисунок 4). Происходит запасание энергии в катушке Lф и конденсаторе Сф.

В фазе разряда транзистор закрыт, ток через него не протекает. Катушка Lф выступает в качестве источника тока. VD1 – диод, который необходим для протекания обратного тока.

В обеих фазах к нагрузке прикладывается напряжение, равное напряжению на конденсаторе Сф.

Приведенная схема обеспечивает регулирование выходного напряжения при изменении длительности импульса:

Uвых = Uвх × (tи/T)

Если величина индуктивности мала, ток разряда через индуктивность успевает достичь нуля. Такой режим называют режимом прерывистых токов. Он характеризуется увеличением пульсаций тока и напряжения на конденсаторе, что приводит к ухудшению качества выходного напряжения и росту шумов схемы. По этой причине режим прерывистых токов используется редко.

Существует разновидность схемы преобразователя, в которой «неэффективный» диод VD1 заменен на транзистор. Этот транзистор открывается в противофазе с основным транзистором VT1. Такой преобразователь называется синхронным и имеет больший КПД.

Достоинства и недостатки схем преобразования напряжений

Если бы одна из приведенных схем обладала абсолютным превосходством, то вторую бы благополучно забыли. Однако этого не происходит. Это значит, что обе схемы имеют преимущества и недостатки. Анализ схем стоит проводить по широкому кругу критериев (таблица 1).

Таблица 1. Преимущества и недостатки схем регуляторов напряжения

Характеристика Линейный регулятор Понижающий DC/DC-преобразователь
Типовой диапазон входных напряжений, В до 30 до 100
Типовой диапазон выходных токов сотни мА единицы А
КПД низкий высокий
Точность установки выходного напряжения единицы % единицы %
Стабильность выходного напряжения высокая средняя
Генерируемый шум низкий высокий
Сложность схемной реализации низкая высокая
Сложность топологии ПП низкая высокая
Стоимость низкая высокая

Электрические характеристики. Для любого преобразователя основными характеристиками являются КПД, ток нагрузки, диапазон входного и выходного напряжений.

Значение КПД для линейных регуляторов невелико и обратно пропорционально входному напряжению (рисунок 6). Это связано с тем, что все «лишнее» напряжение падает на транзисторе, работающем в линейном режиме. Мощность транзистора выделяется в виде тепла. Низкий КПД приводит к тому, что диапазон входных напряжений и выходных токов линейного регулятора относительно невелики: до 30 В и до 1 А.

КПД импульсного регулятора значительно выше и меньше зависит от входного напряжения. При этом не редкостью являются входные напряжения более 60 В и нагрузочные токи более 1 А.

Если используется схема синхронного преобразователя, в котором неэффективный обратный диод заменен транзистором, то КПД будет еще выше.

Точность и стабильность выходного напряжения. Линейные стабилизаторы могут иметь чрезвычайно высокую точность и стабильность параметров (доли процента). Зависимость выходного напряжения от изменения входного и от тока нагрузки не превышает единиц процентов.

Импульсный регулятор по принципу функционирования изначально имеет те же источники погрешности, что и линейный регулятор. Кроме того, на отклонение выходного напряжения может существенно сказываться величина протекающего тока.

Шумовые характеристики. Линейный регулятор обладает умеренной шумовой характеристикой. Существуют низкошумящие прецизионные регуляторы, используемые в высокоточной измерительной технике.

Импульсный стабилизатор сам по себе является мощным источником помех, так как силовой транзистор работает в ключевом режиме. Генерируемые помехи делятся на кондуктивные (передающиеся по линиям питания) и индуктивные (передаются через непроводящие среды).

От кондуктивных помех избавляются при помощи фильтров нижних частот. Чем выше рабочая частота преобразователя, тем проще избавиться от помех. В измерительных схемах импульсный регулятор часто используют совместно с линейным стабилизатором. В этом случае уровень помех значительно сокращается.

Избавиться от вредного воздействия индуктивных помех гораздо сложнее. Эти помехи возникают в катушке индуктивности и передаются по воздуху и непроводящим средам. Для их устранения используют экранированные индуктивности, катушки на тороидальном сердечнике. При разводке платы применяют сплошную заливку полигоном земли и/или даже выделяют отдельный слой земли в многослойных платах. Кроме того, сам импульсный преобразователь максимально удаляется от измерительных схем.

Эксплуатационные характеристики. С точки зрения простоты схемной реализации и разводки печатной платы линейные регуляторы предельно просты. Кроме самого интегрального стабилизатора требуется всего пара конденсаторов.

Импульсный преобразователь потребует как минимум внешнего L-C-фильтра. В ряде случаев требуется внешний силовой транзистор и внешний обратный диод. Это приводит к необходимости расчетов и моделирования, а топология печатной платы существенно усложняется. Дополнительное усложнение платы происходит из-за требования к ЭМС.

Стоимость. Очевидно, что в силу большого количества внешних компонентов импульсный преобразователь будет иметь большую стоимость.

В качестве вывода можно определить преимущественные области применения обоих типов преобразователей:

  • линейные регуляторы могут применяться в маломощных низковольтных схемах с высокими точностью, стабильностью и требованиями к малым уровням шумов. Примером могут быть измерительные и прецизионные схемы. Кроме того, малые габариты и низкая стоимость итогового решения могут идеально подойти для портативной электроники и бюджетных устройств.
  • импульсные регуляторы идеально подойдут для мощных низко- и высоковольтных схем в автомобильной, промышленной и бытовой электронике. Высокий КПД зачастую делает использование DC/DC безальтернативным для портативных устройств и устройств с батарейным питанием.

Иногда возникает необходимость использовать линейные регуляторы при высоких входных напряжениях. В таких случаях можно воспользоваться стабилизаторами производства компании STMicroelectronics, обладающими рабочими напряжениями более 18 В. (таблица 2).

Таблица 2. Линейные регуляторы STMicroelectronics с высоким входным напряжением

Наименование Описание Uвх макс, В Uвых ном, В Iвых ном, А Собственное
падение, В
35 5, 6, 8, 9, 10, 12, 15 0.5 2
Прецизионный регулятор на 500 мА 40 24 0.5 2
регулятор на 2 А 35 0.225 2 2
, Подстраиваемый регулятор 40 0.1; 0.5; 1.5 2
регулятор на 3 А 20 3 2
Прецизионный регулятор на 150 мА 40 0.15 3
KFxx 20 2.5: 8 0.5 0.4
Регулятор со сверхнизким собственным падением 20 2.7: 12 0.25 0.4
Регулятор на 5 А с низким собственным падением и подстройкой выходного напряжения 30 1.5; 3; 5 1.3
LExx Регулятор со сверхнизким собственным падением 20 3; 3.3; 4.5; 5; 8 0.1 0.2
Регулятор со сверхнизким собственным падением 20 3.3; 5 0.1 0.2
Регулятор со сверхнизким собственным падением 40 3.3; 5 0.1 0.25
регулятор на 85 мА с низким собственным падением 24 2.5: 3.3 0.085 0.5
Прецизионный регулятор отрицательного напряжения -35 -5; -8; -12; -15 1.5 1.1; 1.4
Регулятор отрицательного напряжения -35 -5; -8; -12; -15 0.1 1.7
Подстраиваемый регулятор отрицательного напряжения -40 1.5 2

Если принято решение о построении импульсного ИП, то следует выбрать подходящую микросхему преобразователя. Выбор осуществляется с учетом ряда основных параметров.

Основные характеристики понижающих импульсных DC/DC-преобразователей

Перечислим основные параметры импульсных преобразователей.

Диапазон входных напряжений (В). К сожалению, всегда есть ограничение не только на максимальное, но и на минимальное входное напряжение. Значение этих параметров всегда выбирается с некоторым запасом.

Диапазон выходных напряжений (В). В силу ограничения на минимальную и максимальную длительность импульса, диапазон значений выходного напряжения ограничен.

Максимальный выходной ток (А). Данный параметр ограничивается целым рядом факторов: максимальной допустимой рассеиваемой мощностью, конечным значением сопротивления силовых ключей и др.

Частота работы преобразователя (кГц). Чем выше частота преобразования, тем проще произвести фильтрацию выходного напряжения. Это позволяет бороться с помехами и снижать значения номиналов элементов внешнего L-C-фильтра, что приводит к увеличению выходных токов и к уменьшению габаритов. Однако рост частоты преобразования увеличивает потери на переключение силовых ключей и увеличивает индуктивную составляющую помех, что явно нежелательно.

КПД (%) является интегральным показателем эффективности и приводится в виде графиков для различных значений напряжений и токов.

Остальные параметры (сопротивление каналов интегральных силовых ключей (мОм), собственный ток потребления (мкА), тепловое сопротивление корпуса и др.) являются менее важными, но их также следует учитывать.

Новые преобразователи производства компании STMicroelectronics имеют высокие входное напряжение и КПД, и их параметры могут быть рассчитаны при помощи бесплатной программы eDesignSuite.

Линейка импульсных DC/DC от ST Microelectronics

Портфолио DC/DC STMicro­electro­nics постоянно расширяется. Новые микросхемы преобразователей имеют расширенный диапазон входных напряжений до 61 В ( / ), высокие выходные токи, выходные напряжения от 0.6 В ( / / ) (таблица 3).

Таблица 3. Новые DC/DC STMicroelectronics

Характеристики Наименование
L7987; L7987L
Корпус VFQFPN-10L HSOP-8; VFQFPN-8L; SO8 HSOP-8; VFQFPN-8L; SO8 HTSSOP16 VFQFPN-10L; HSOP 8 VFQFPN-10L; HSOP 8 HSOP 8 HTSSOP 16
Входное напряжение Uвх, В 4.0…18 4.0…18 4.0…18 4…38 4.5…38 4.5…38 4.5…38 4.5…61
Выходной ток, А 4 3 4 2 2 3 3 2 (L7987L); 3 (L7987)
Диапазон выходных напряжений, В 0.8…0.88×Uвх 0.8…Uвх 0.8…Uвх 0.85…Uвх 0.6…Uвх 0.6…Uвх 0.6…Uвх 0.8…Uвх
Рабочая частота, кГц 500 850 850 250…2000 250…1000 250…1000 250…1000 250…1500
Внешняя синхронизация частоты (макс), кГц нет нет нет 2000 1000 1000 1000 1500
Функции Плавный старт; защита от перегрузки по току; защита от перегрева
Дополнительные функции ENABLE; PGOOD ENABLE LNM; LCM; INHIBIT; защита от перегрузки по напряжению ENABLE PGOOD; защита от провалов напряжения; подстройка тока отсечки
Диапазон рабочих температур кристалла, °C -40…150

Все новые микросхемы импульсных преобразователей имеют функции плавного старта, защиты от перегрузки по току и перегрева.

Наверное многие помнят мою эпопею с самодельным лабораторным блоком питания.
Но меня неоднократно спрашивали что нибудь похожее, только попроще и подешевле.
В этом обзоре я решил показать альтернативный вариант простого регулируемого блока питания.
Заходите, надеюсь, что будет интересно.

Я долго откладывал этот обзор, то времени не было, что настроения, но вот дошли у меня руки и до него.
Данный блок питания имеет несколько другие характеристики чем .
Основой блока питания будет плата DC-DC понижающего преобразователя с цифровым управлением.
Но всему свое время, а сейчас собственно немного стандартных фотографий.
Пришла платка в небольшой коробочке, ненамного больше пачки сигарет.

Внутри, в двух пакетиках (пупырчатом и антистатическом) была собственно героиня данного обзора, плата преобразователя.

Плата имеет довольно простую конструкцию, силовая часть и небольшая плата с процессором (данная плата похожа на плату из другого, менее мощного преобразователя), кнопками управления и индикатором.

Характеристики данной платы
Входное напряжение - 6-32 Вольта
Выходное напряжение - 0-30 Вольт
Выходной ток - 0-8 Ампер
Минимальная дискретность установки\отображения напряжения - 0.01 Вольта
Минимальная дискретность установки\отображения тока - 0.001 Ампера
Так же данная плата умеет измерять емкость, которая отдана в нагрузку и мощность.
Частота преобразования, указанная в инструкции - 150КГц, по даташиту контроллера - 300КГц, измеренная - около 270КГц, что заметно ближе к параметру указанному в даташите.

На основной плате размещены силовые элементы, ШИМ контроллер, силовой диод и дроссель, конденсаторы фильтра (470мкФ х 50 Вольт), ШИМ контроллер питания логики и операционных усилителей, операционные усилители, токовый шунт, а так же входные и выходные клеммники.

Сзади ничего практически и нет, только несколько силовых дорожек.

На дополнительной плате установлен процессор, микросхемы логики, стабилизатор 3.3 Вольта для питания платы, индикатор и кнопки управления.
Процессор -
Логика - 2 штуки
Стабилизатор питания -

На силовой плате установлены операционные усилители 2 штуки (такие же операционники стоит и в ZXY60xx)
ШИМ контроллер питания самой платы adj

В качестве силового ШИМ контроллера выступает микросхема . По даташиту это 12 Ампер ШИМ контроллер, так что здесь он работает не в полную силу, что не может не радовать. Однако стоит учесть, что входное напряжение лучше не превышать, это так же может быть опасно.
В описании на плату указано максимальное входное напряжение 32 Вольта, предельное для контроллера - 35 Вольт.
В более мощных преобразователях применяют слаботочный контроллер, управляющий мощным полевым транзистором, здесь все это делает один мощный ШИМ контроллер.
Приношу извинения за фотографии, никак не получалось добиться хорошего качества.

В инструкции, найденной мною в интернете, описан вход в сервисный режим, где можно изменить некоторые параметры. Для входа в сервисный режим надо подать питания при нажатой кнопке ОК, на экране будут последовательно переключаться цифры 0-2, что бы переключить настройку, надо отпустить кнопку во время отображения соответствующей цифры.
0 - Включение автоматической подачи напряжения на выход при подаче питания на плату.
1 - Включение расширенного режима, отображающего не только ток и напряжение, а и емкость, отданную в нагрузку и выходную мощность.
2 - Автоматический перебор отображения измерений на экране или ручной.

Так же в инструкции есть и пример запоминания настроек, так как у платы можно настроить лимит по установке тока и напряжения и есть память установок, но в эти дебри я уже не лез.
Так же я не трогал контактны для разъема UART, находящиеся на плате, так как даже если там что-то и есть, то программы для этой платы я все равно не нашел.

Резюме.
Плюсы .
1. Довольно богатые возможности - установка и измерение тока и напряжения, измерение емкости и мощности, а так же наличие режима автоматической подачи напряжения на выход.
2. Диапазон выходного напряжения и тока вполне достаточен для большинства любительских применений.
3. Качество изготовления не то что бы хорошее, но без явных огрехов.
4. Компоненты установлены с запасом, ШИМ на 12 Ампер при 8 заявленных, конденсаторы на 50 Вольт по входу и выходу, при заявленных 32 Вольта.

Минусы
1. Очень неудобно сделан экран, он может отображать только 1 параметр, например -
0.000 - Ток
00.00 - Напряжение
Р00.0 - Мощность
С00.0 - Емкость.
В случае последних двух параметров точка плавающая.
2. Исходя из первого пункта, довольно неудобное управление, валкодер бы очень не помешал.

Мое мнение.
Вполне достойная плата для построения простенького регулируемого блока питания, но блок питания лучше и проще использовать какой нибудь готовый.
Обзор понравился +123 +268

Компания STMicroelectronics выпускает микросхемы для создания неизолированных DC/DC-преобразователей с высокими качественными показателями, требующие небольшого количества внешних компонентов.

Постоянное развитие ИС для DC/DC-преобразователей характеризуется следующими факторами:

  • повышением рабочих частот преобразования (максимальная частота преобразования для микросхем STMicroelectronics составляет 1,7МГц), что позволяет резко уменьшить размеры внешних компонентов и минимизировать площадь печатной платы;
  • уменьшением размеров корпусов микросхем благодаря высоким частотам преобразования (корпус DFN6D имеет размеры всего 3х3мм);
  • повышением удельной плотности выходного тока (корпус DFN6D обеспечивает выходной ток до 2,0А; корпуса DFN8 и PowerSO-8 могут работать при токах до 3,0А);
  • повышением КПД и снижением потребляемой мощности при отключенном состоянии, что особенно важно для приборов с автономным питанием.

Компания STM разделяет свои микросхемы для неизолированных DC/DC-преобразователей на две группы. Первая группа имеет рабочую частоту до 1 МГц (параметры сведены в таблицу 1), вторая группа — с частотой преобразования 1,5 и 1,7 МГц (параметры см. в таблице 2). Во вторую группу добавлены также и микросхемы серии ST1S10 с номинальной частотой преобразования 0,9 МГц (максимальная частота преобразования для этих микросхем может достигать 1,2 МГц). Микросхемы серии ST1S10 могут работать при синхронизации от внешнего генератора в диапазоне частот от 400 кГц до 1,2 МГц.

Таблица 1. Микросхемы STMicroelectronics для DC/DC-преобразователей с частотой преобразования до 1 МГц

Наименование Топология Vвх., В Vвых., В Iвых., А Частота
преобразования, МГц
Вход
отключения
Корпус
L296 Step-down 9…46 5,1…40 4 до 200 Есть MULTIWATT-15
L4960 Step-down 9…46 5,1…40 2,5 до 200 Нет HEPTAWATT-7
L4962 Step-down 9…46 5,1…40 1,5 до 200 Есть HEPTAWATT-8, DIP-16
L4963 Step-down 9…46 5,1…40 1,5 42…83 Нет DIP-18, SO-20
L4970A Step-down 12…50 5,1…50 10 до 500 Нет MULTIWATT-15
L4971 Step-down 8…55 3,3…50 1,5 до 300 Есть DIP-8, SO-16W
L4972A Step-down 12…50 5,1…40 2 до 200 Нет DIP-20, SO-20
L4973D3.3 Step-down 8…55 0,5…50 3,5 до 300 Есть DIP-8, SO-16W
L4973D5.1 Step-down 8…55 5,1…50 3,5 до 300 Есть DIP-8, SO-16W
L4974A Step-down 12…50 5,1…40 3,5 до 200 Нет MULTIWATT-15
L4975A Step-down 12…50 5,1…40 5 до 500 Нет MULTIWATT-15
L4976 Step-down 8…55 0,5…50 1 до 300 Есть DIP-8, SO-16W
L4977A Step-down 12…50 5,1…40 7 до 500 Нет MULTIWATT-15
L4978 Step-down 8…55 3,3…50 2 до 300 Есть DIP-8, SO-16W
L5970AD Step-down 4,4…36 0,5…35 1 500 Есть SO-8
L5970D Step-down 4,4…36 0,5…35 1 250 Есть SO-8
L5972D Step-down 4,4…36 1,23…35 1,5 250 Нет SO-8
L5973AD Step-down 4,4…36 0,5…35 1,5 500 Есть HSOP-8
L5973D Step-down 4,4…36 0,5…35 2 250 Есть HSOP-8
L5987A Step-down 2,9…18 0,6…Vвх. 3 250…1000 Есть HSOP-8
L6902D Step-down 8…36 0,5…34 1 250 Нет SO-8
L6920D Step-up 0,6…5,5 2…5,2 1 до 1000 Есть TSSOP-8
L6920DB Step-up 0,6…5,5 1,8…5,2 0,8 до 1000 Есть miniSO-8

Таблица 2. Микросхемы для понижающих DC/DC-преобразователей с частотой преобразования от 0,9 до 1,7 МГц

Серия Наименование Iвых., А Vвх.,В Vвых., В Частота
преобразования, МГц
Вход
отключения
Корпус
ST1S03 ST1S03PUR 1,5 3…16 0,8…12 1,5 Нет DFN6D (3х3 мм)
ST1S03A ST1S03AIPUR 3…5.5 0,8…5.5 1,5 Есть DFN6D (3х3 мм)
ST1S03APUR 1,5 Нет
ST1S06 ST1S06PUR 2,7…6 0,8…5.5 1,5 Есть DFN6D (3х3 мм)
ST1S06A ST1S06APUR 1,5 Нет
ST1S06xx12 ST1S06PU12R 2,7…6 1,2 1,5 Есть DFN6D (3×3 мм)
ST1S06xx33 ST1S06PU33R 3,3 1,5 Есть
ST1S09 ST1S09IPUR 2,0 2,7…5,5 0,8…5 1,5 Есть DFN6D (3х3 мм)
ST1S09PUR 1,5 Нет
ST1S10 ST1S10PHR 3,0 2,5…18 0,8…0,85Vвх. 0,9 (0,4…1,2)* Есть PowerSO-8
ST1S10PUR DFN8 (4×4 мм)
ST1S12xx ST1S12GR 0,7 2,5…5,5 1,2…5 1,7 Есть TSOT23-5L
ST1S12xx12 ST1S12G12R 1,2
ST1S12xx18 ST1S12G18R 1,8
* - в скобках указан диапазон частот преобразования при синхронизации от внешнего генератора.

Основная часть микросхем для DC/DC-преобразователей из таблицы 1 имеет частоту преобразования до 300 кГц. На таких частотах облегчается выбор индуктивностей на выходе DC/DC, т. к. для рабочих частот микросхем из таблицы 2 (1,5 и 1,7 МГц) на частотные характеристики индуктивностей необходимо обращать особое внимание. На рисунках 1 и 2 в качестве примеров приведены рекомендуемые производителем схемы включения микросхем L5973D (выходной ток до 2,0 А при частоте преобразования 250 кГц) и ST1S06 (выходной ток до 1,5 А при частоте преобразования 1,5 МГц).

Рис. 1.


Рис. 2.

Из рисунков 1 и 2 видно, что микросхемы с относительно низкими частотами преобразования по современным меркам требуют большего количества внешних электронных компонентов, имеющих увеличенные размеры по сравнению с компонентами преобразователей, работающих на частотах более 1 МГц. Микросхемы для DC/DC из таблицы 2 обеспечивают гораздо меньшие размеры печатной платы, но необходимо более внимательно относиться к разводке проводников для уменьшения излучаемых электромагнитных помех.

Некоторые микросхемы позволяют управлять включением и выключением конвертеров благодаря наличию входа INHIBIT. Пример включения таких микросхем приведен на рис. 3. ST1S09 (без входа INHIBIT) и ST1S09I (с входом INHIBIT). В нижней части этого рисунка приведены рекомендуемые значения номиналов резисторов R1 и R2 для формирования выходных напряжений 1,2 и 3,3 В.

Рис. 3.

При наличии на входе управления VINH высокого уровня напряжения (более 1,3 В) микросхема ST1S09I находится в активном состоянии; при напряжении на этом входе менее 1,4 В DC/DC-преобразователь отключается (собственное потребление при этом составляет менее 1 мкА). Вариант микросхемы без входа управления на выводе 6 вместо входа VINH имеет выход «PG = Power Good» (питание в норме). Формирование сигнала «Power Good» проиллюстрировано на рис. 4. Когда на входе «FB» (FeedBack или вход обратной связи) достигается значение 0,92хVFB, происходит переключение компаратора, и на выходе PG формируется высокий уровень напряжения, информирующий о том, что выходное напряжение находится в допустимых пределах.


Рис. 4.

Эффективность преобразования
на примере микросхем ST1S09 и ST1S09I

Эффективность понижающего DC/DC-преобразователя сильно зависит от параметров интегрированных в микросхемы транзисторов с изолированным затвором (MOSFET), выполняющих роль ключа. Одна из проблем высокочастотных преобразователей связана с током заряда затвора транзистора при управлении им с помощью ШИМ-контроллера. Потери в этом случае практически не зависят от тока в нагрузке. Вторая проблема, снижающая КПД, — рассеиваемая в транзисторе мощность во время переключения из одного состояния в другое (в эти промежутки времени транзистор работает в линейном режиме). Уменьшить потери можно, обеспечив более крутые фронты переключения, но это повышает электромагнитные шумы и помехи по цепям питания. Еще одна причина снижения КПД преобразователя — наличие активного сопротивления «сток — исток» (Rdson). В правильно спроектированной схеме КПД достигает максимального значения при равенстве статических (омических) и динамических потерь. Следует учесть, что выходной выпрямительный диод также вносит свою долю динамических и статических потерь. Некорректно выбранная индуктивность на выходе DC/DC-преобразователя может дополнительно существенно снизить эффективность преобразования, что заставляет помнить и об ее высокочастотных свойствах. В самом плохом случае на высоких частотах преобразования выходной дроссель может потерять свои индуктивные свойства, и преобразователь просто не будет работать.

Компания STMicroelectronics уже много лет выпускает мощные полевые транзисторы и диоды с очень высокими динамическими и статическими характеристиками. Обладание отлаженной технологией производства транзисторов MOSFET позволяет компании интегрировать свои полевые транзисторы в микросхемы для DC/DC-преобразователей и достигать высоких значений КПД преобразования.

На рис. 5 (а, б, в) в качестве примера приведены типовые зависимости эффективности преобразования от некоторых параметров при разных условиях работы. Графики зависимости КПД от величины выходного тока достигают максимальных значений около 95% при токе 0,5 А. Далее спад этих характеристик довольно пологий, что характеризует лишь небольшое увеличение потерь при росте выходного тока до максимального значения.


Рис. 5а.

На рис. 5б показаны зависимости КПД от уровня выходного напряжения DC/DC-преобразователей на микросхемах ST1S09 и ST1S09I. С ростом выходного напряжения КПД возрастает. Это объясняется тем, что падение напряжения на транзисторах выходного каскада практически не зависит от выходного напряжения при неизменном выходном токе, поэтому с ростом выходного напряжения процент вносимых потерь будет уменьшаться.


Рис. 5б.

На рис. 5в приведены зависимости КПД от величины индуктивности на выходе. В диапазоне от 2 до 10 мкГн эффективность преобразования практически не изменяется, что позволяет выбирать величину индуктивности из широкого диапазона номиналов. Конечно, нужно стремиться к максимально возможному уровню индуктивности для обеспечения лучшей фильтрации напряжения пульсаций выходного тока. Понятно, что с ростом значений выходного тока КПД уменьшается. Это объясняется ростом потерь в выходных каскадах DC/DC-преобразователей.


Рис. 5в.

Сравнение с микросхемами других производителей

В таблицах 3, 4 и 5 приведены параметры близких по функциональному значению микросхем от других производителей.

Из таблицы 3 видно, что FAN2013MPX — это полный аналог для микросхемы ST1S09IPUR, но у компании STMicroelectronics дополнительно в этой серии есть микросхема ST1S09PUR с наличием выхода «Power Good», что расширяет выбор разработчика.

Таблица 3. Близкие замены микросхем для DC/DC-преобразователей от других производителей

Производитель Наименование Iвых макс., А Частота
преобразования, МГц
Power Good Совместимость
по выводам
Корпус
STMicroelectronics ST1S09PUR 2 1,5 Есть Есть DFN3x3-6
ST1S09IPUR Нет Есть
Fairchild Semiconductor FAN2013MPX 2 1,3 Нет Есть DFN3x3-6

В таблице 4 приведены функциональные замены (нет совместимости по выводам) от других производителей для микросхем ST1S10. Основное преимущество микросхем ST1S10 — наличие синхронного выпрямления в выходных каскадах, что обеспечивает более высокий КПД преобразования. Кроме того, корпус DFN8 (4х4 мм) имеет меньшие размеры по сравнению с корпусами функционально близких микросхем других производителей. Внутренняя схема компенсации позволяет сократить количество внешних компонентов обвязки микросхем.

Таблица 4. Близкие замены микросхем ST1S10PxR для понижающих DC/DC-преобразователей от других производителей

Производитель Наименование Iвых макс., А Синхронное выпрямление Компенсация Мягкий запуск Совмести- мость
по выводам
Корпус
STMicroelectronics ST1S10PHR 3 Есть Внутренняя Внутренний - PowerSO-8
ST1S10PUR DFN8 (4×4 мм)
Monolithic Power Systems MP2307/MP1583 3 Есть/Нет Внешняя Внешний Нет SO8-EP
Alpha & Omega Semiconductor AOZ1013 3 Нет Внешняя Внутренний Нет SO8
Semtech SC4521 3 Нет Внешняя Внешний Нет SO8-EP
AnaChip AP1510 3 Нет Внутренняя Внутренний Нет SO8

В таблице 5 показаны возможные замены для микросхем ST1S12. Основное преимущество микросхем ST1S12 — большее значение максимально допустимого выходного тока: до 700 мА. Микросхема MP2104 фирмы MPS совместима по выводам с микросхемой ST1S12. Микросхемы LM3674 и LM3671 можно рассматривать только в качестве близкой функциональной замены для ST1S112 из-за отсутствия совместимости по выводам.

Таблица 5. Близкие замены микросхем ST1S12 для понижающих DC/DC-преобразователей от других производителей

Производитель Наименование Iвых
(макс.), мА
Частота
преобразования, МГц
Vвх (макс.), В Вход
отключения
Совмести- мость
по выводам
Корпус
STMicroelectronics ST1S12 700 1,7 5,5 есть - TSOT23-5L
Monolithic Power Systems MP2104 600 1,7 6 есть есть TSOT23-5L
National Semiconductor LM3674 600 2 5,5 есть нет SOT23-5L
LM3671 600 2 5,5 есть нет SOT23-5L

Выбор микросхем для
DC/DC-преобразователей на сайте

Для быстрого поиска электронных компонентов по известным параметрам удобнее всего воспользоваться сайтом . Для параметрического поиска на этом сайте настоятельно рекомендуется установить и использовать бесплатную программу для просмотра сайтов (браузер) «Google Chrome». Работа в этом браузере ускоряет поиск в несколько раз. Микросхемы для DC/DC-преобразователей компании STMicroelectronics можно найти на сайте по следующему пути: «Управление питанием» ® «ИМС для DC/DC» ® «Регуляторы (+ключ)». Далее можно выбрать бренд «ST» и активировать фильтр «Склад» для выбора только тех компонентов, которые имеются на складе. Результат этих действий показан на рис. 6. Можно сделать более конкретную выборку по требуемым параметрам, применяя другие фильтры.

Заключение

Особенно важен правильный выбор микросхем для DC/DC-преобразователей в приборах с автономными источниками питания. В некоторых случаях выбор подходящей схемы питания может оказаться трудной задачей, но, уделив достаточно времени проработке и выбору схемы электропитания устройства, можно добиться определенного преимущества над конкурентами за счет более компактного и недорогого решения с более высокой эффективностью преобразования электрической энергии. Микросхемы для DC/DC-преобразователей STMicroelectronics облегчают выбор и позволяют реализовать заложенные в них преимущества при создании конкурентоспособных схем электропитания.

Получение технической информации, заказ образцов, поставка — e-mail:

Универсальный автомобильный преобразователь (конвертер) "DC/DC".

Это простой, универсальный DC/DC - преобразователь (преобразователь одного напряжения постоянного тока в другое). Его входное напряжение может быть от 9 и до 18 В, с выходным напряжением 5-28 вольт, которое может при необходимости быть изменено в пределах примерно от 3 до 50В. Выходное напряжение данного преобразователя может быть как меньше входного, так и больше.
Отдаваемая в нагрузку мощность может доходить до 100 Вт. Средний ток нагрузки преобразователя составляет 2,5-3 ампера (зависит от выходного напряжения, и при выходном напряжении, например 5 вольт - ток нагрузки может быть и 8 ампер и более).
Этот преобразователь подходит для различных целей, таких как - запитывание ноутбуков, усилителей, портативных телевизоров и другой бытовой техники от бортовой сети автомобиля 12V, так-же зарядка мобильных телефонов, устройств USB, 24В техника и др.
Преобразователь устойчив к перегрузкам и коротким замыканиям на выходе, так как входная и выходная цепь - гальванически не связаны между собой, и например выход из строя силового транзистора, не приведёт к выходу из строя подключенной нагрузки, и всего лишь на выходе пропадёт напряжение (ну и перегорит защитный предохранитель).

Рисунок 1.
Схема преобразователя.

Преобразователь построен на микросхеме UC3843. В отличии от обычных схем подобных преобразователей, здесь в качестве энерго-вырабатывающего элемента применён не дроссель, а трансформатор, с соотношением витков 1:1, в связи с чем его вход и выход, гальванически развязаны между собой.
Рабочая частота преобразователя составляет около 90-95 kHz.
Рабочее напряжение конденсаторов С8 и С9 выбирать, в зависимости от выходного напряжения.
Величина резистора R9, определяет порог ограничения преобразователя по току. Чем меньше его величина, тем больше ток ограничения.
Вместо подстроечного резистора R3, можно поставить переменный, и им регулировать выходное напряжение, или поставить ряд постоянных резисторов с фиксированными значениями выходного напряжения, и выбирать их переключателем.
Для расширения диапазона выходных напряжений, необходимо пересчитать делитель напряжения R2, R3, R4, таким образом, чтобы напряжение на выводе 2 микросхемы, составляло 2,5 вольта при необходимом выходном напряжении.

Рисунок 2.
Трансформатор.

Сердечник трансформатора использован от компьютерных блоков питания АТ, АТХ, на котором намотан ДГС (дроссель групповой стабилизации). Сердечник окраски жёлто-белый, можно использовать любые подходящие сердечники. Хорошо подходят и сердечники от подобных БП и сине-зелёной окраски.
Обмотки трансформатора намотаны в два провода и содержат 2х24 витка, проводом, диаметром 1,0 мм. Начала обмоток на схеме обозначены точками.

В качестве выходных силовых транзисторов желательно использовать те, у которых малое сопротивление открытого канала. В частности SUP75N06-07L, SUP75N03-08, SMP60N03-10L, IRL1004, IRL3705N. И выбирать их ещё нужно с максимальным рабочим напряжением, в зависимости от максимального выходного напряжения. Максимальное рабочее напряжение транзистора не должно быть меньше 1,25 от выходного напряжения.
В качестве диода VD1, можно применить спаренный диод Шоттки, с обратным напряжением не менее 40В и максимальным током не менее 15А, так же желательно в корпусе ТО-220. Например SLB1640, или STPS1545 и т.д.

Схема была собрана и протестирована на макетной плате. В качестве силового транзистора был использован полевой транзистор 09N03LA, выдранный из "дохлой материнки". В качестве диода - спаренный диод Шоттки SBL2045CT.

Рисунок 3.
Тест 15V-4A.

Тестирование инвертора при входном напряжении 12 вольт и выходном напряжении 15 вольт. Ток нагрузки инвертора составляет 4 ампера. Мощность нагрузки составляет 60 ватт.

Рисунок 4.
Тест 5V-8A.

Тестирование инвертора при входном напряжении 12 вольт, выходное напряжение 5V и ток нагрузки 8A. Мощность нагрузки составляет 40 ватт. Силовой транзистор применённый в схеме = 09N03LA (SMD из материнки), D1 = SBL2045CT (от комповых БП), R9 = 0R068 (0,068 Ом), C8 = 2 х 4700 10V.

Печатная плата, разработанная для этого устройства, размером 100х38 мм, с учётом установки транзистора и диода на радиатор. Печатка в формате Sprint-Layout 6.0 , прилагается в прикреплении.

Ниже на фотографиях вариант сборки данной схемы с применением SMD-компонентов. Печатка разведена для SMD-компонентов, размером 1206.

Рисунок 5.
Вариант сборки преобразователя.

Если нет необходимости регулировать выходное напряжение на выходе данного преобразователя, то тогда переменный резистор R3 можно исключить, и подобрать резистор R2 так, чтобы выходное напряжение преобразователя соответствовало необходимому.

Архив для статьи

Понравилась статья? Поделитесь ей
Наверх