2 izvod složene funkcije. Derivacija složene funkcije

Rješavanje fizikalnih problema ili primjera iz matematike potpuno je nemoguće bez poznavanja derivacije i metoda za njezino izračunavanje. Derivativa je jedna od najvažniji pojmovi matematička analiza. Odlučili smo današnji članak posvetiti ovoj temeljnoj temi. Što je derivat, što je njegov fizički i geometrijsko značenje kako izračunati derivaciju funkcije? Sva se ova pitanja mogu spojiti u jedno: kako razumjeti izvedenicu?

Geometrijsko i fizičko značenje derivacije

Neka postoji funkcija f(x) , naveden u određenom intervalu (a, b) . Točke x i x0 pripadaju tom intervalu. Kada se x promijeni, mijenja se i sama funkcija. Promjena argumenta - razlika u njegovim vrijednostima x-x0 . Ova razlika se piše kao delta x i naziva se prirast argumenta. Promjena ili povećanje funkcije je razlika između vrijednosti funkcije u dvije točke. Definicija derivata:

Derivacija funkcije u točki je granica omjera prirasta funkcije u danoj točki i prirasta argumenta kada potonji teži nuli.

Inače se može napisati ovako:

Koja je svrha pronalaženja takve granice? A evo što je:

derivacija funkcije u točki jednaka je tangensu kuta između osi OX i tangente na graf funkcije u danoj točki.


Fizičko značenje izvedenica: derivacija puta po vremenu jednaka je brzini pravocrtnog gibanja.

Dapače, još od školskih dana svi znaju da je brzina poseban put x=f(t) i vrijeme t . Prosječna brzina u određenom vremenskom razdoblju:

Da biste saznali brzinu kretanja u određenom trenutku t0 morate izračunati granicu:

Prvo pravilo: postavite konstantu

Konstanta se može uzeti iz predznaka izvoda. Štoviše, to se mora učiniti. Kada rješavate primjere iz matematike, uzmite to kao pravilo - Ako možete pojednostaviti izraz, svakako ga pojednostavite .

Primjer. Izračunajmo derivaciju:

Drugo pravilo: derivacija zbroja funkcija

Derivacija zbroja dviju funkcija jednaka je zbroju derivacija tih funkcija. Isto vrijedi i za derivaciju razlike funkcija.

Nećemo davati dokaz ovog teorema, već ćemo razmotriti praktični primjer.

Pronađite izvod funkcije:

Treće pravilo: derivacija umnoška funkcija

Derivacija umnoška dviju diferencijabilnih funkcija izračunava se po formuli:

Primjer: pronađite izvod funkcije:

Riješenje:

Ovdje je važno govoriti o izračunavanju derivacija složenih funkcija. Derivacija složene funkcije jednaka je umnošku derivacije te funkcije s obzirom na međuargument i derivacije međuargumenta s obzirom na nezavisnu varijablu.

U gornjem primjeru nailazimo na izraz:

U ovom slučaju, srednji argument je 8x na petu potenciju. Da bismo izračunali izvod takvog izraza, prvo izračunamo izvod vanjska funkcija međuargumentom, a zatim pomnožite s derivacijom samog posrednog argumenta u odnosu na nezavisnu varijablu.

Četvrto pravilo: derivacija kvocijenta dviju funkcija

Formula za određivanje derivacije kvocijenta dviju funkcija:

Pokušali smo ispočetka razgovarati o derivatima za lutke. Ova tema nije tako jednostavna kao što se čini, stoga budite upozoreni: u primjerima često postoje zamke, stoga budite oprezni pri izračunavanju izvedenica.

Za sva pitanja o ovoj i drugim temama možete se obratiti studentskoj službi. U kratkom vremenu pomoći ćemo vam riješiti najteži test i razumjeti zadatke, čak i ako nikada prije niste radili izvodne izračune.

U ovoj lekciji ćemo naučiti kako pronaći izvod složene funkcije. Lekcija je logičan nastavak lekcije Kako pronaći izvedenicu?, u kojem smo ispitivali najjednostavnije izvodnice, a također smo se upoznali s pravilima diferenciranja i nekim tehničkim tehnikama pronalaženja izvodnica. Stoga, ako niste baš dobri s izvedenicama funkcija ili neke točke u ovom članku nisu sasvim jasne, onda prvo pročitajte gornju lekciju. Molim vas da se malo uozbiljite - gradivo nije jednostavno, ali ću ga ipak pokušati iznijeti jednostavno i jasno.

U praksi se s izvodom složene funkcije morate susresti vrlo često, čak bih rekao, gotovo uvijek, kada dobijete zadatak pronaći izvode.

Gledamo u tablici pravilo (br. 5) za razlikovanje složene funkcije:

Hajdemo shvatiti. Prije svega, obratimo pozornost na unos. Ovdje imamo dvije funkcije - i , a funkcija je, slikovito rečeno, ugniježđena unutar funkcije . Funkcija ovog tipa (kada je jedna funkcija ugniježđena unutar druge) naziva se složena funkcija.

Pozvat ću funkciju vanjska funkcija, i funkcija – unutarnja (ili ugniježđena) funkcija.

! Ove definicije nisu teoretske i ne bi se trebale pojavljivati ​​u konačnom dizajnu zadataka. Koristim neformalne izraze "vanjska funkcija", "unutarnja" funkcija samo kako bih vam olakšao razumijevanje gradiva.

Da biste razjasnili situaciju, razmotrite sljedeće:

Primjer 1

Pronađite izvod funkcije

Pod sinusom nemamo samo slovo "X", već cijeli izraz, tako da pronalaženje derivata odmah iz tablice neće uspjeti. Također primjećujemo da je ovdje nemoguće primijeniti prva četiri pravila, čini se da postoji razlika, ali činjenica je da se sinus ne može “rastrgati”:

U ovom primjeru je već iz mojih objašnjenja intuitivno jasno da je funkcija složena funkcija, a polinom unutarnja funkcija (ugrađivanje), a vanjska funkcija.

Prvi korak ono što trebate učiniti kada pronalazite izvod složene funkcije je razumjeti koja je funkcija unutarnja, a koja vanjska.

Kada jednostavni primjeriČini se jasnim da je polinom umetnut ispod sinusa. Ali što ako sve nije očito? Kako točno odrediti koja je funkcija vanjska, a koja unutarnja? Da biste to učinili, predlažem korištenje sljedeće tehnike, koja se može učiniti mentalno ili u nacrtu.

Zamislimo da na kalkulatoru trebamo izračunati vrijednost izraza at (umjesto jedinice može biti bilo koji broj).

Što ćemo prvo izračunati? Kao prvo morat ćete izvršiti sljedeću radnju: , stoga će polinom biti unutarnja funkcija:

Drugo morat će se pronaći, pa će sinus – biti vanjska funkcija:

Nakon što smo PRODANO Kod unutarnjih i vanjskih funkcija vrijeme je da se primijeni pravilo razlikovanja složenih funkcija.

Počnimo odlučivati. Iz razreda Kako pronaći izvedenicu? sjećamo se da dizajn rješenja bilo koje izvedenice uvijek počinje ovako - izraz stavljamo u zagrade i stavljamo crtu gore desno:

Isprva nalazimo derivaciju vanjske funkcije (sinus) pogledamo tablicu derivacija elementarnih funkcija i uočimo da . Sve formule tablice također su primjenjive ako se "x" zamijeni složenim izrazom, u ovom slučaju:

Imajte na umu da unutarnja funkcija nije se promijenio, ne diramo ga.

Pa, to je sasvim očito

Konačni rezultat primjene formule izgleda ovako:

Konstantni faktor obično se nalazi na početku izraza:

Ako dođe do nesporazuma, zapišite rješenje na papir i ponovno pročitajte objašnjenja.

Primjer 2

Pronađite izvod funkcije

Primjer 3

Pronađite izvod funkcije

Kao i uvijek, zapisujemo:

Idemo shvatiti gdje imamo vanjsku funkciju, a gdje unutarnju. Da bismo to učinili, pokušavamo (mentalno ili u nacrtu) izračunati vrijednost izraza na . Što trebate učiniti prvo? Prije svega, morate izračunati čemu je jednaka baza: dakle, polinom je unutarnja funkcija:

I tek tada se vrši potenciranje, dakle, funkcija stepena je vanjska funkcija:

Prema formuli, prvo morate pronaći izvod vanjske funkcije, u ovom slučaju stupanj. Traženu formulu tražimo u tablici: . Opet ponavljamo: svaka tablična formula vrijedi ne samo za "X", već i za složeni izraz. Dakle, rezultat primjene pravila za razlikovanje složene funkcije je sljedeći:

Ponovno naglašavam da kada uzmemo izvod vanjske funkcije, naša unutarnja funkcija se ne mijenja:

Sada sve što preostaje je pronaći vrlo jednostavnu derivaciju interne funkcije i malo dotjerati rezultat:

Primjer 4

Pronađite izvod funkcije

Ovo je primjer za neovisna odluka(odgovor na kraju lekcije).

Da biste učvrstili svoje razumijevanje izvoda složene funkcije, dat ću primjer bez komentara, pokušajte to sami shvatiti, zaključite gdje je vanjska, a gdje unutarnja funkcija, zašto su zadaci riješeni na ovaj način?

Primjer 5

a) Pronađite izvod funkcije

b) Pronađite izvod funkcije

Primjer 6

Pronađite izvod funkcije

Ovdje imamo korijen, a da bismo razlikovali korijen, on mora biti predstavljen kao moć. Dakle, prvo dovodimo funkciju u oblik prikladan za diferenciranje:

Analizirajući funkciju dolazimo do zaključka da je zbroj tri člana unutarnja funkcija, a dizanje na potenciju vanjska funkcija. Primjenjujemo pravilo diferenciranja složenih funkcija:

Stupanj ponovno predstavljamo kao radikal (korijen), a za derivaciju interne funkcije primjenjujemo jednostavno pravilo diferenciranja zbroja:

Spreman. Također možete svesti izraz na zajednički nazivnik u zagradama i zapisati sve kao jedan razlomak. Lijepo je, naravno, ali kada dobijete glomazne duge izvedenice, bolje je to ne činiti (lako se zbuniti, napraviti nepotrebnu pogrešku, a učitelju će biti nezgodno provjeravati).

Primjer 7

Pronađite izvod funkcije

Ovo je primjer koji trebate sami riješiti (odgovor na kraju lekcije).

Zanimljivo je primijetiti da ponekad umjesto pravila za diferenciranje složene funkcije možete koristiti pravilo za diferenciranje kvocijenta , ali takvo će rješenje izgledati kao smiješna izopačenost. Evo tipičnog primjera:

Primjer 8

Pronađite izvod funkcije

Ovdje možete koristiti pravilo diferencijacije kvocijenta , ali mnogo je isplativije pronaći derivaciju pomoću pravila diferenciranja složene funkcije:

Funkciju pripremimo za diferenciranje - iz predznaka izvoda izbacimo minus, a kosinus podignemo u brojnik:

Kosinus je unutarnja funkcija, potenciranje je vanjska funkcija.
Iskoristimo naše pravilo:

Pronalazimo izvod interne funkcije i vraćamo kosinus natrag prema dolje:

Spreman. U razmatranom primjeru važno je ne zbuniti se u znakovima. Usput, pokušajte to riješiti pomoću pravila , odgovori se moraju podudarati.

Primjer 9

Pronađite izvod funkcije

Ovo je primjer koji trebate sami riješiti (odgovor na kraju lekcije).

Do sada smo gledali slučajeve u kojima smo imali samo jedno gniježđenje u složenoj funkciji. U praktičnim zadacima često možete pronaći izvedenice, gdje su, poput lutkica, jedna u drugoj, ugniježđene 3 ili čak 4-5 funkcija odjednom.

Primjer 10

Pronađite izvod funkcije

Hajdemo razumjeti priloge ove funkcije. Pokušajmo izračunati izraz pomoću eksperimentalne vrijednosti. Kako bismo računali na kalkulator?

Prvo morate pronaći , što znači da je arkusinus najdublje ugrađivanje:

Ovaj arkusinus od jedan treba kvadrirati:

I na kraju, dižemo sedam na potenciju:

To jest, u ovom primjeru imamo tri različite funkcije i dva ugrađivanja, dok je najunutarnja funkcija arkus, a najunutarnja funkcija je eksponencijalna funkcija.

Počnimo odlučivati

Prema pravilu, prvo trebate uzeti derivat vanjske funkcije. Gledamo tablicu derivacija i pronalazimo derivaciju eksponencijalne funkcije: Jedina je razlika što umjesto “x” imamo složeni izraz, što ne poništava valjanost ove formule. Dakle, rezultat primjene pravila za razlikovanje složene funkcije je sljedeći:

Pod udarom opet imamo složenu funkciju! Ali to je već jednostavnije. Lako je provjeriti da je unutarnja funkcija arkus, a vanjska funkcija stupanj. Prema pravilu za diferenciranje složene funkcije, prvo trebate uzeti derivaciju potencije.

Na kojem smo ispitivali najjednostavnije izvodnice, a također se upoznali s pravilima diferenciranja i nekim tehničkim tehnikama pronalaženja izvodnica. Stoga, ako niste baš dobri s izvedenicama funkcija ili neke točke u ovom članku nisu sasvim jasne, onda prvo pročitajte gornju lekciju. Molim vas da se malo uozbiljite - gradivo nije jednostavno, ali ću ga ipak pokušati iznijeti jednostavno i jasno.

U praksi se s izvodom složene funkcije morate susresti vrlo često, čak bih rekao, gotovo uvijek, kada dobijete zadatak pronaći izvode.

Gledamo u tablici pravilo (br. 5) za razlikovanje složene funkcije:

Hajdemo shvatiti. Prije svega, obratimo pozornost na unos. Ovdje imamo dvije funkcije - i , a funkcija je, slikovito rečeno, ugniježđena unutar funkcije . Funkcija ovog tipa (kada je jedna funkcija ugniježđena unutar druge) naziva se složena funkcija.

Pozvat ću funkciju vanjska funkcija, i funkcija – unutarnja (ili ugniježđena) funkcija.

! Ove definicije nisu teoretske i ne bi se trebale pojavljivati ​​u konačnom dizajnu zadataka. Koristim neformalne izraze "vanjska funkcija", "unutarnja" funkcija samo kako bih vam olakšao razumijevanje gradiva.

Da biste razjasnili situaciju, razmotrite sljedeće:

Primjer 1

Pronađite izvod funkcije

Pod sinusom nemamo samo slovo "X", već cijeli izraz, tako da pronalaženje derivata odmah iz tablice neće uspjeti. Također primjećujemo da je ovdje nemoguće primijeniti prva četiri pravila, čini se da postoji razlika, ali činjenica je da se sinus ne može “rastrgati”:

U ovom primjeru je već iz mojih objašnjenja intuitivno jasno da je funkcija složena funkcija, a polinom unutarnja funkcija (ugrađivanje), a vanjska funkcija.

Prvi korak ono što trebate učiniti kada pronalazite izvod složene funkcije je razumjeti koja je funkcija unutarnja, a koja vanjska.

U slučaju jednostavnih primjera, čini se jasnim da je polinom umetnut ispod sinusa. Ali što ako sve nije očito? Kako točno odrediti koja je funkcija vanjska, a koja unutarnja? Da biste to učinili, predlažem korištenje sljedeće tehnike, koja se može učiniti mentalno ili u nacrtu.

Zamislimo da na kalkulatoru trebamo izračunati vrijednost izraza at (umjesto jedinice može biti bilo koji broj).

Što ćemo prvo izračunati? Kao prvo morat ćete izvršiti sljedeću radnju: , stoga će polinom biti unutarnja funkcija:

Drugo morat će se pronaći, pa će sinus – biti vanjska funkcija:

Nakon što smo PRODANO s unutarnjim i vanjskim funkcijama, vrijeme je za primjenu pravila razlikovanja složenih funkcija .

Počnimo odlučivati. Iz lekcije Kako pronaći izvedenicu? sjećamo se da dizajn rješenja bilo koje izvedenice uvijek počinje ovako - izraz stavljamo u zagrade i stavljamo crtu gore desno:

Isprva nalazimo derivaciju vanjske funkcije (sinus) pogledamo tablicu derivacija elementarnih funkcija i uočimo da . Sve formule tablice također su primjenjive ako se "x" zamijeni složenim izrazom, u ovom slučaju:

Imajte na umu da unutarnja funkcija nije se promijenio, ne diramo ga.

Pa, to je sasvim očito

Rezultat primjene formule u konačnom obliku izgleda ovako:

Konstantni faktor obično se nalazi na početku izraza:

Ako dođe do nesporazuma, zapišite rješenje na papir i ponovno pročitajte objašnjenja.

Primjer 2

Pronađite izvod funkcije

Primjer 3

Pronađite izvod funkcije

Kao i uvijek, zapisujemo:

Idemo shvatiti gdje imamo vanjsku funkciju, a gdje unutarnju. Da bismo to učinili, pokušavamo (mentalno ili u nacrtu) izračunati vrijednost izraza na . Što trebate učiniti prvo? Prije svega, morate izračunati čemu je jednaka baza: dakle, polinom je unutarnja funkcija:

I tek tada se vrši potenciranje, dakle, funkcija stepena je vanjska funkcija:

Prema formuli , prvo morate pronaći izvod vanjske funkcije, u ovom slučaju stupanj. Traženu formulu tražimo u tablici: . Opet ponavljamo: svaka tablična formula vrijedi ne samo za "X", već i za složeni izraz. Dakle, rezultat je primjene pravila za razlikovanje složene funkcije Sljedeći:

Ponovno naglašavam da kada uzmemo izvod vanjske funkcije, naša unutarnja funkcija se ne mijenja:

Sada sve što preostaje je pronaći vrlo jednostavnu derivaciju interne funkcije i malo dotjerati rezultat:

Primjer 4

Pronađite izvod funkcije

Ovo je primjer koji trebate sami riješiti (odgovor na kraju lekcije).

Da biste učvrstili svoje razumijevanje izvoda složene funkcije, dat ću primjer bez komentara, pokušajte to sami shvatiti, zaključite gdje je vanjska, a gdje unutarnja funkcija, zašto su zadaci riješeni na ovaj način?

Primjer 5

a) Pronađite izvod funkcije

b) Pronađite izvod funkcije

Primjer 6

Pronađite izvod funkcije

Ovdje imamo korijen, a da bismo razlikovali korijen, on mora biti predstavljen kao moć. Dakle, prvo dovodimo funkciju u oblik prikladan za diferenciranje:

Analizirajući funkciju dolazimo do zaključka da je zbroj tri člana unutarnja funkcija, a dizanje na potenciju vanjska funkcija. Primjenjujemo pravilo diferenciranja složenih funkcija :

Stupanj ponovno predstavljamo kao radikal (korijen), a za derivaciju interne funkcije primjenjujemo jednostavno pravilo diferenciranja zbroja:

Spreman. Također možete svesti izraz na zajednički nazivnik u zagradama i zapisati sve kao jedan razlomak. Lijepo je, naravno, ali kada dobijete glomazne duge izvedenice, bolje je to ne činiti (lako se zbuniti, napraviti nepotrebnu pogrešku, a učitelju će biti nezgodno provjeravati).

Primjer 7

Pronađite izvod funkcije

Ovo je primjer koji trebate sami riješiti (odgovor na kraju lekcije).

Zanimljivo je primijetiti da ponekad umjesto pravila za diferenciranje složene funkcije možete koristiti pravilo za diferenciranje kvocijenta , ali takvo će rješenje izgledati kao neobična izopačenost. Evo tipičnog primjera:

Primjer 8

Pronađite izvod funkcije

Ovdje možete koristiti pravilo diferencijacije kvocijenta , ali mnogo je isplativije pronaći derivaciju pomoću pravila diferenciranja složene funkcije:

Funkciju pripremimo za diferenciranje - iz predznaka izvoda izbacimo minus, a kosinus podignemo u brojnik:

Kosinus je unutarnja funkcija, potenciranje je vanjska funkcija.
Iskoristimo naše pravilo :

Pronalazimo izvod interne funkcije i vraćamo kosinus natrag prema dolje:

Spreman. U razmatranom primjeru važno je ne zbuniti se u znakovima. Usput, pokušajte to riješiti pomoću pravila , odgovori se moraju podudarati.

Primjer 9

Pronađite izvod funkcije

Ovo je primjer koji trebate sami riješiti (odgovor na kraju lekcije).

Do sada smo gledali slučajeve u kojima smo imali samo jedno gniježđenje u složenoj funkciji. U praktičnim zadacima često možete pronaći izvedenice, gdje su, poput lutkica, jedna u drugoj, ugniježđene 3 ili čak 4-5 funkcija odjednom.

Primjer 10

Pronađite izvod funkcije

Hajdemo razumjeti priloge ove funkcije. Pokušajmo izračunati izraz pomoću eksperimentalne vrijednosti. Kako bismo računali na kalkulator?

Prvo morate pronaći , što znači da je arkusinus najdublje ugrađivanje:

Ovaj arkusinus od jedan treba kvadrirati:

I na kraju, dižemo sedam na potenciju:

To jest, u ovom primjeru imamo tri različite funkcije i dva ugrađivanja, dok je najunutarnja funkcija arkus, a najunutarnja funkcija je eksponencijalna funkcija.

Počnimo odlučivati

Prema pravilu Prvo morate uzeti izvod vanjske funkcije. Gledamo tablicu derivacija i pronalazimo derivaciju eksponencijalne funkcije: Jedina je razlika što umjesto “x” imamo složeni izraz, što ne poništava valjanost ove formule. Dakle, rezultat je primjene pravila za diferenciranje složene funkcije Sljedeći.

Ako g(x) I f(u) – diferencijabilne funkcije njihovih argumenata, odnosno u točkama x I u= g(x), tada je i kompleksna funkcija diferencijabilna u točki x a nalazi se formulom

Tipična pogreška pri rješavanju problema derivacija je mehanički prijenos pravila za diferenciranje jednostavnih funkcija na složene funkcije. Naučimo izbjeći ovu grešku.

Primjer 2. Pronađite izvod funkcije

Pogrešno rješenje: izračunajte prirodni logaritam svakog člana u zagradama i potražite zbroj izvedenica:

Točno rješenje: opet određujemo gdje je "jabuka", a gdje "mljeveno meso". Ovdje je prirodni logaritam izraza u zagradama "jabuka", to jest funkcija preko srednjeg argumenta u, a izraz u zagradama je “mljeveno meso”, odnosno posredni argument u nezavisnom varijablom x.

Zatim (koristeći formulu 14 iz tablice izvedenica)

U mnogim problemima iz stvarnog života, izraz s logaritmom može biti nešto kompliciraniji, zbog čega postoji lekcija

Primjer 3. Pronađite izvod funkcije

Pogrešno rješenje:

Točno rješenje. Još jednom određujemo gdje je "jabuka", a gdje "mljeveno meso". Ovdje je kosinus izraza u zagradama (formula 7 u tablici izvedenica) "jabuka", pripremljena je u modusu 1, koji utječe samo na nju, a izraz u zagradama (izvodnica stupnja je broj 3) u tablici izvedenica) je “mljeveno meso”, priprema se pod načinom 2 koji utječe samo na njega. I kao i uvijek, znakom proizvoda povezujemo dvije izvedenice. Proizlaziti:

Derivacija složene logaritamske funkcije čest je zadatak na kolokvijima, stoga Vam toplo preporučamo da prisustvujete lekciji “Derivacija logaritamske funkcije”.

Prvi primjeri bili su na složenim funkcijama, u kojima je posredni argument na nezavisnoj varijabli bila jednostavna funkcija. Ali u praktičnim zadacima često je potrebno pronaći izvod složene funkcije, gdje je srednji argument ili sam složena funkcija ili sadrži takvu funkciju. Što učiniti u takvim slučajevima? Pronađite izvode takvih funkcija pomoću tablica i pravila diferenciranja. Kada se pronađe derivat posrednog argumenta, on se jednostavno zamijeni na pravo mjesto u formuli. Ispod su dva primjera kako se to radi.

Osim toga, korisno je znati sljedeće. Ako se složena funkcija može prikazati kao lanac od tri funkcije

tada bi se njegova derivacija trebala pronaći kao produkt derivacija svake od ovih funkcija:

Mnogi od vaših domaćih zadataka mogu zahtijevati da otvorite svoje vodiče u novim prozorima. Radnje s moćima i korijenima I Operacije s razlomcima .

Primjer 4. Pronađite izvod funkcije

Primjenjujemo pravilo diferenciranja složene funkcije, ne zaboravljajući da u rezultirajućem umnošku derivacija postoji posredni argument u odnosu na nezavisnu varijablu x ne mijenja se:

Pripremamo drugi faktor umnoška i primjenjujemo pravilo diferenciranja zbroja:

Drugi izraz je korijen, dakle

Stoga smo otkrili da međuargument, koji je zbroj, sadrži složenu funkciju kao jedan od izraza: podizanje na potenciju je složena funkcija, a ono što se podiže na potenciju je međuargument u odnosu na neovisnu varijabla x.

Stoga ponovno primjenjujemo pravilo za razlikovanje složene funkcije:

Stupanj prvog faktora pretvaramo u korijen, a pri diferenciranju drugog faktora ne zaboravimo da je derivacija konstante jednaka nuli:

Sada možemo pronaći derivaciju srednjeg argumenta potrebnog za izračunavanje derivacije složene funkcije koja je potrebna u izjavi problema g:

Primjer 5. Pronađite izvod funkcije

Prvo koristimo pravilo za razlikovanje zbroja:

Dobili smo zbroj derivacija dviju složenih funkcija. Pronađimo prvu:

Ovdje je podizanje sinusa na potenciju složena funkcija, a sam sinus je srednji argument za nezavisnu varijablu x. Stoga ćemo usput koristiti pravilo diferenciranja složene funkcije uzimanje faktora iz zagrada :

Sada nalazimo drugi član derivacija funkcije g:

Ovdje je podizanje kosinusa na potenciju složena funkcija f, a sam kosinus je posredni argument u nezavisnoj varijabli x. Poslužimo se opet pravilom za razlikovanje složene funkcije:

Rezultat je tražena derivacija:

Tablica derivacija nekih složenih funkcija

Za složene funkcije, na temelju pravila diferenciranja složene funkcije, formula za derivaciju jednostavne funkcije ima drugačiji oblik.

1. Izvedenica složenice funkcija snage, Gdje u x
2. Izvedenica korijena izraza
3. Derivacija eksponencijalne funkcije
4. Poseban slučaj eksponencijalne funkcije
5. Derivacija logaritamske funkcije s proizvoljnom pozitivnom bazom A
6. Derivacija složene logaritamske funkcije, gdje je u– diferencijabilna funkcija argumenta x
7. Derivacija sinusa
8. Derivacija kosinusa
9. Derivacija tangente
10. Derivacija kotangensa
11. Derivacija arcsinusa
12. Derivacija ark kosinusa
13. Derivacija arktangensa
14. Derivacija ark kotangensa
Svidio vam se članak? Podijeli
Vrh