Простенький регулируемый DC-DC преобразователь, или лабораторный блок питания своими руками V2. Как работают импульсные преобразователи напряжения (27 схем) Понижающий преобразователь напряжения dc схема

Универсальный автомобильный преобразователь (конвертер) "DC/DC".

Это простой, универсальный DC/DC - преобразователь (преобразователь одного напряжения постоянного тока в другое). Его входное напряжение может быть от 9 и до 18 В, с выходным напряжением 5-28 вольт, которое может при необходимости быть изменено в пределах примерно от 3 до 50В. Выходное напряжение данного преобразователя может быть как меньше входного, так и больше.
Отдаваемая в нагрузку мощность может доходить до 100 Вт. Средний ток нагрузки преобразователя составляет 2,5-3 ампера (зависит от выходного напряжения, и при выходном напряжении, например 5 вольт - ток нагрузки может быть и 8 ампер и более).
Этот преобразователь подходит для различных целей, таких как - запитывание ноутбуков, усилителей, портативных телевизоров и другой бытовой техники от бортовой сети автомобиля 12V, так-же зарядка мобильных телефонов, устройств USB, 24В техника и др.
Преобразователь устойчив к перегрузкам и коротким замыканиям на выходе, так как входная и выходная цепь - гальванически не связаны между собой, и например выход из строя силового транзистора, не приведёт к выходу из строя подключенной нагрузки, и всего лишь на выходе пропадёт напряжение (ну и перегорит защитный предохранитель).

Рисунок 1.
Схема преобразователя.

Преобразователь построен на микросхеме UC3843. В отличии от обычных схем подобных преобразователей, здесь в качестве энерго-вырабатывающего элемента применён не дроссель, а трансформатор, с соотношением витков 1:1, в связи с чем его вход и выход, гальванически развязаны между собой.
Рабочая частота преобразователя составляет около 90-95 kHz.
Рабочее напряжение конденсаторов С8 и С9 выбирать, в зависимости от выходного напряжения.
Величина резистора R9, определяет порог ограничения преобразователя по току. Чем меньше его величина, тем больше ток ограничения.
Вместо подстроечного резистора R3, можно поставить переменный, и им регулировать выходное напряжение, или поставить ряд постоянных резисторов с фиксированными значениями выходного напряжения, и выбирать их переключателем.
Для расширения диапазона выходных напряжений, необходимо пересчитать делитель напряжения R2, R3, R4, таким образом, чтобы напряжение на выводе 2 микросхемы, составляло 2,5 вольта при необходимом выходном напряжении.

Рисунок 2.
Трансформатор.

Сердечник трансформатора использован от компьютерных блоков питания АТ, АТХ, на котором намотан ДГС (дроссель групповой стабилизации). Сердечник окраски жёлто-белый, можно использовать любые подходящие сердечники. Хорошо подходят и сердечники от подобных БП и сине-зелёной окраски.
Обмотки трансформатора намотаны в два провода и содержат 2х24 витка, проводом, диаметром 1,0 мм. Начала обмоток на схеме обозначены точками.

В качестве выходных силовых транзисторов желательно использовать те, у которых малое сопротивление открытого канала. В частности SUP75N06-07L, SUP75N03-08, SMP60N03-10L, IRL1004, IRL3705N. И выбирать их ещё нужно с максимальным рабочим напряжением, в зависимости от максимального выходного напряжения. Максимальное рабочее напряжение транзистора не должно быть меньше 1,25 от выходного напряжения.
В качестве диода VD1, можно применить спаренный диод Шоттки, с обратным напряжением не менее 40В и максимальным током не менее 15А, так же желательно в корпусе ТО-220. Например SLB1640, или STPS1545 и т.д.

Схема была собрана и протестирована на макетной плате. В качестве силового транзистора был использован полевой транзистор 09N03LA, выдранный из "дохлой материнки". В качестве диода - спаренный диод Шоттки SBL2045CT.

Рисунок 3.
Тест 15V-4A.

Тестирование инвертора при входном напряжении 12 вольт и выходном напряжении 15 вольт. Ток нагрузки инвертора составляет 4 ампера. Мощность нагрузки составляет 60 ватт.

Рисунок 4.
Тест 5V-8A.

Тестирование инвертора при входном напряжении 12 вольт, выходное напряжение 5V и ток нагрузки 8A. Мощность нагрузки составляет 40 ватт. Силовой транзистор применённый в схеме = 09N03LA (SMD из материнки), D1 = SBL2045CT (от комповых БП), R9 = 0R068 (0,068 Ом), C8 = 2 х 4700 10V.

Печатная плата, разработанная для этого устройства, размером 100х38 мм, с учётом установки транзистора и диода на радиатор. Печатка в формате Sprint-Layout 6.0 , прилагается в прикреплении.

Ниже на фотографиях вариант сборки данной схемы с применением SMD-компонентов. Печатка разведена для SMD-компонентов, размером 1206.

Рисунок 5.
Вариант сборки преобразователя.

Если нет необходимости регулировать выходное напряжение на выходе данного преобразователя, то тогда переменный резистор R3 можно исключить, и подобрать резистор R2 так, чтобы выходное напряжение преобразователя соответствовало необходимому.

Архив для статьи

В основном, питание различных устройств и приборов осуществляется линейным стабилизатором. Это обусловлено привычкой и простотой схемы. Но при таком способе существует один серьезный недостаток нагрев и как следствие более высокое энергопотреблении. Хорошим выходом из данной ситуации является использование достаточно распространенных сегодня специализированных микросхем который осуществляют преобразование номинала постоянного напряжения в обоих направлениях.

Резисторы R3, R2 являются классическим делителем, с них поступает на пятый вывод обратной связи преобразователя .


Работа схемы: Для установки нужного нам значения в вольтах на выходе микросхемы mc34063 достаточно выбрать нужные номиналы сопротивлений R3, R2. Их значения можно рассчитать с помощью специальной программы расчетки для mc34063, архив с которой вы можете скачать по ссылке чуть выше. Сопротивление R1 ограничивает ток на выходе микросхемы и предохраняет ее от короткого замыкания.

3.3В из 1.2/1.5В на MCP1640

В радиолюбительской практике возникают случаи, когда для питания самоделки необходимо напряжение 3.3 В, но под рукой имеется только типа АА или ААА на 1.2 - 1.5 В. Тогда на помощь приходят микросборки повышающих преобразователей dc dc


MCP1640 имеет отличный КПД до 96%, поддерживает входной уровень от 0.35 Вольт и более. Выходное регулируется в диапазоне от 2.0 В до 5.5 В. На схеме номиналы радиокомпонентов подобраны, для получения 3.3 В от типовой пальчиковой батарейки. Вывод VFB применяется для регулировки с помощью резистивного делителя. Номинальное напряжение обратной связи в этом DC DC преобразователе составляет 1.21 В при регулировки выходного. Максимальный выходной ток - 150 мА.

На микросхеме LTC3400

КПД этой микросборки 92%. Начальное напряжение - 0.85 В, а выходное лежит в интервале от 2.5 В до 5 В и настраивается с помощью формулы:

V OUT = 1.23V ×

Вывод микросборки LTC3400 SHDN нужно соединить с V in через подтягивающее сопротивление номиналом 1 МОм. Максимальный ток, который можно получить на выходе, составляет 100 мА. Таким образом LTC3400 или MCP1640 в схеме DC DC преобразователя идеально подойдут для ваших микроконтроллерных самоделок, где питание реализовано от типовых батареек.

Схема очень похожа, но есть незначительные отличия.


Номиналы для схемы DC-DC повышающего преобразователя соответствуют выходному "U" в 12 вольт, если требуется другой номинал используйте туже программу расчетку, что и к схеме выше.

на специализированных интегральных микросхемах смотри здесь.

Стандартная схема двухтактного импульсного DC-DC на микросхеме TL494, работает с частотой 112 кГц. На выходе схемы стоят высоковольтные выпрямительные диоды удваивающие вольты. В схеме в качестве Т1 применяется готовый высокочастотный трансформатор марки EL33-ASH из блока питания сгоревшего принтера . Измерив сопротивления обмоток выяснилось, что соотношение их (I к II) - 1:20.


Защиту схемы от перегрузки и обратного включения питания можно сделать через предохранитель и диод, подсоединенные в прямом направлении на входе.

Схема DC DC из 12 В постоянного в 1000В

Работа схемы: стабильность выходного уровня такова, что при колебании тока нагрузки от 0 до 200 мкА изменение выходного "U" невозможно обнаружить по четырехзначному цифровому вольтметру, т.е. оно не превышает 0,1 %. Схема DC DC преобразователя собрано по традиционному варианту с использованием обратного выброса "U" самоиндукции. Транзистор VT1, работающий в ключевом режиме, подает на первичную обмотку трансформатора Т1 напряжение источника питания на время, равное 10...16 мкс. В момент закрывания транзистора энергия, накопленная в магнитопроводе трансформатора, преобразуется в импульс амплитудой около 250 В на вторичной обмотке (около 40 В на первичной).

Иногда возникает необходимость получить большое напряжение, обладая только питающим элементом на 1,5 вольта. В этом случае на помощь придут повышающие преобразователи напряжения DC DC. Приведенная на рисунке ниже схема преобразователя демонстрирует один из методов получения 90 В от простой батарейки 1.5 В.

Используемая в схеме DC DC преобразователя микросхема типа LT1073 (Linear Technology) работает в повышающем режиме и при входном уровне от одного вольта. Переключающий транзистор, внутри микросборки между выводами SW1 и SW2 соединяет один конец индуктивности L1 с корпусом. Магнитное поле накапливается в катушке, и после выключения транзистора через диод D1 начинает идти ток, заряжающий конденсатор C3. Диодный каскад из D1, D2, D3 (быстрые диоды с обратным напряжением 200 В, например, MUR120), C2, C3 и C4 умножает выходное напряжение в четыре раза.


Контур преобразователя замыкается через делитель напряжения (на резисторах сопротивлением 10 МОм и 24 кОм). Эти сопротивления должны быть обязательно металлоплёночными с погрешностью не более 1%. При использовании компонентов указанных на схеме DC DC и катушки индуктивности Coilcraft DO1608C-154 можно получить выходное напряжение уровнем до 90 В, но правда ток при этом будет только несколько миллиампер.

Как вы знаете, для того чтобы зажечь белые и синие светодиоды нужно как минимум 3В, в отличие от красных которые могут светиться от 1,2 до 1,5 вольт в зависимости от типа.

Чтобы белый светодиод начал светится от одной батареи на 1,5 вольт необходимо построить электронную схему под названием . Эти устройства, как правило, используется для получения более высокого выходного напряжения по сравнению с входным постоянным током (DC).

В цепях с переменным током эту функцию . Что бы получить более высокое выходное напряжение достаточно, чтобы соотношение количества витков вторичной обмотки к числу первичной было больше 1 (коэффициент трансформации > 1).

Описание работы преобразователя для светодиода

Возвращаясь к нашему преобразователю постоянного тока, есть множество различных вариантов реализации DC-DC преобразования, многие из которых достаточно сложные. В нашем случае, цель состоит в создании схемы простого и эффективного преобразователя для повышения напряжения от 1,5 В до 3,5 В. Ниже приведена схема подобного DC-DC преобразователя для светодиодов.

Для намотки дросселя необходим феррит, форма и размер которого может быть любыми, но лучше применить сердечник типа «кольцо» (или тора) 1…1,5 см в диаметре. Такой, как правило, используется в качестве фильтра на силовых проводах питания (черный блок рядом с разъемом), также его можно найти в импульсных источниках питания, видеомагнитофонов, сканеров и т.д. Обмотка выполнена проводом ПЭВ-2 диаметром 0,4 мм и содержит 30 витков.

Электронная схема очень проста: она состоит из катушки, двух транзисторов, одного конденсатора и двух резисторов. Набор не впечатляет, но со своей целью справляется. Ток потребления составляет 25 мА, что эквивалентно примерно 50 часам непрерывной работы аккумулятора типа АА. Схема работает достаточно хорошо, обеспечивая средний уровень свечения светодиода.

LM2596 - понижающий преобразователь постоянного тока, он выпускается часто в виде готовых модулей, около 1 доллара ценой (в поиске LM2596S DC-DC 1.25-30 В 3A). Заплатив же 1,5 доллара, на Али можно взять похожий модуль с LED индикацией об входном и выходном напряжении, выключение выходного напряжения и точной настройкой кнопками с отображением значений на цифровых индикаторах. Согласитесь - предложение более чем заманчивое!

Ниже приводится принципиальная схема данной платы преобразователя (ключевые компоненты отмечены на картинке в конце). На входе есть защита от переполюсовки - диода D2. Это позволит предотвратить повреждения регулятора неправильно подключенным входным напряжением. Несмотря на то, что микросхема lm2596 может обрабатывать согласно даташита входные напряжения вплоть до 45 В, на практике входное напряжение не должно превышать 35 В при длительном использовании.

Для lm2596, выходное напряжение определяется уравнением, приведённым ниже. Резистором R2 выходное напряжение можно регулировать в пределах от 1.23 до 25 В.

Хотя микросхема lm2596 рассчитана на максимальный ток 3 А непрерывной работы, малая поверхность фольги-массы не достаточна, чтобы рассеять выделяемое тепло во всём диапазоне работы схемы. Также отметим, что КПД этого преобразователя варьируется весьма сильно в зависимости от входного напряжения, выходного напряжения и тока нагрузки. Эффективность может колебаться от 60% до 90% в зависимости от условий эксплуатации. Поэтому теплоотвод является обязательным, если непрерывная работа идёт при токах более чем 1 А.

Согласно даташиту, конденсатор прямой связи необходимо устанавливать параллельно резистору R2, особенно когда напряжение на выходе превышает 10 В - это нужно для обеспечения стабильности. Но этот конденсатор часто не присутствует на китайских недорогих платах инверторов. В ходе экспериментов были проверены несколько экземпляров DC преобразователей в различных условиях эксплуатации. В итоге пришли к выводу, что стабилизатор на ЛМ2596 хорошо подходит для низких и средних токов питания цифровых схем, но для более высоких значений выходной мощности необходим теплоотвод.

Это DC-DC преобразователь напряжения с 5-13 В на входе, до 12 В выходного постоянного тока 1,5 А. Преобразователь получает меньшее напряжение и дает более высокое на выходе, чтобы использовать там где есть напряжение меньшее требуемых 12 вольт. Часто он используется для увеличения напряжения имеющихся батареек. Это по сути интегральный DC-DC конвертер. Для примера: есть литий-ионный аккумулятор 3,7 В, и его напряжение с помощью данной схемы можно изменить, чтобы обеспечить необходимые 12 В на 1,5 А.

Преобразователь легко построить самостоятельно. Основным компонентом является микросхема MC34063, которая состоит из источника опорного напряжения (температурно-компенсированного), компаратора, генератора с активным контуром ограничения пикового тока, вентиля (элемент "И"), триггера и мощного выходного ключа с драйвером и требуется только несколько дополнительных электронных компонентов в обвязку для того чтобы он был готов. Эта серия микросхем была специально разработана, чтобы включены их в состав различных преобразователей.

Достоинства микросхемы MC34063A

  • Работа от 3 до 40 В входа
  • Низкий ток в режиме ожидания
  • Ограничение тока
  • Выходной ток до 1,5 A
  • Выходное напряжение регулируемое
  • Работа в диапазоне частот до 100 кГц
  • Точность 2%


Описание радиоэлементов

  • R - Все резисторы 0,25 Вт.
  • T - TIP31-NPN силовой транзистор. Весь выходной ток проходит через него.
  • L1 - 100 мкГн ферритовые катушки. Если придётся делать самостоятельно, нужно приобрести тороидальные ферритовые кольца наружным диаметром 20 мм и внутренним диаметром 10 мм, тоже 10 мм высотой и проволоку 1 - 1,5 мм толщиной на 0,5 метра, и сделать 5 витков на равных расстояниях. Размеры ферритового кольца не слишком критичны. Разница в несколько (1-3 мм) приемлема.
  • D - диод Шоттки должен быть использован обязательно
  • TR - многовитковый переменный резистор, который используется здесь для точной настройки выходного напряжения 12 В.
  • C - C1 и C3 полярные конденсаторы, поэтому обратите внимание на это при размещении их на печатной плате.

Список деталей для сборки

  1. Резисторы: R1 = 0.22 ом x1, R2 = 180 ом x1, R3 = 1,5 K x1, R4 = 12K x1
  2. Регулятор: TR1 = 1 кОм, многооборотный
  3. Транзистор: T1 = TIP31A или TIP31C
  4. Дроссель: L1 = 100 мкГн на ферритовом кольце
  5. Диод: D1 - шоттки 1N5821 (21V - 3A), 1N5822 (28V - 3A) или MBR340 (40В - 3A)
  6. Конденсаторы: C1 = 100 мкФ / 25V, C2 = 0.001 мкФ, C3 = 2200 мкФ / 25V
  7. Микросхема: MC34063
  8. Печатная плата 55 x 40 мм


Заметим, что необходимо установить небольшой алюминиевый радиатор на транзистор T1 - TIP31, в противном случае этот транзистор может быть поврежден из-за повышенного нагрева, особенно на больших токах нагрузки. Даташит и рисунок печатной платы

Понравилась статья? Поделитесь ей
Наверх