5 видов правильных многогранников. Реферат по математике на тему: Правильные многогранники читать

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №3

РЕФЕРАТ

по геометрии

Тема:

«Многогранники».

Выполнила: ученица 11-«б» класса

МОУ СОШ №3

Алябьева Юлия.

Проверила: преподаватель математики

г. Железноводск

План

I. Введение. 3

II. Теоретическая часть

1. Двугранный угол4

2. Трехгранный и многогранный углы4

3. Многогранник. . 5

4. Призма6

7. Параллелепипед 9

8. Центральная симметрия параллелепипеда10

9. Прямоугольный параллелепипед. . 11

11. Пирамида

13. Усеченная пирамида

14. Правильная пирамида. 15

15. Правильные многогранники

III. Практическая часть

IV. Заключение

V. Литература

I. Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как многогранники. "Многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

II. Теоретическая часть.

1. Двугранный угол

Двугранным углом называется фигура, образованная двумя "полуплоскостями с общей ограничивающей их прямой (рис. 1). Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла.

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным. углом двугранного угла.

За меру двугранного угла принимается мера соответствующего ему линейного угла. Все линейные углы двугранного угла совмещаются параллельным переносом, а значит, равны. Поэтому мера двугранного угла не зависит от выбора линейного угла.

2. Трехгранный и многогранный углы

Рассмотрим три луча а, Ь, с, исходящие из одной точки и не лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная "из трех плоских углов (аЬ), (Ьс) и (ас) (рис. 2). Эти углы называются гранями трехгранного угла, а их стороны - ребрами, общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла (рис. 3).

3. Многогранник

В стереометрии изучаются фигуры в пространстве, называемые телами. Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник - это такое тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 4). Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника.

Поясним сказанное на примере знакомого вам куба (рис. 5). Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC, .... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,... . Вершинами куба являются вершины квадратов: А, В, С, D, Е, .... У куба шесть граней, двенадцать ребер и восемь вершин.

Простейшим многогранникам - призмам и пирамидам, которые будут основным объектом нашего изучения,- мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников (рис. 6). Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины,- боковыми ребрами призмы.

Так как параллельный перенос есть движение, то основания призмы равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у призмы основания лежат в параллельных плоскостях.

Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие - соседними боковыми ребрами.

Высотой призмы называется расстояние между плоскостями её оснований. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.

Призма называется n-угольной, если ее основания - n-угольники.

В дальнейшем мы будем рассматривать только призмы, у которых основания - выпуклые многоугольники. Такие призмы являются выпуклыми многогранниками.

На рисунке 6 изображена пятиугольная призма. У нее основаниями являются пятиугольники А1А2...А5, А1’А"2...А"5. XX" - отрезок, соединяющий соответствующие точки оснований. Боковые ребра призмы-отрезки А1А"2, А1А"2, ..., А5А"5. Боковые грани призмы - параллелограммы А1А2А"2А1 , А2А3А’3А"2, ... .

5. Изображение призмы и построение ее сечений

В соответствии с правилами параллельного проектирования изображение призмы строится следующим образом. Сначала строится одно из оснований Р (рис. 7). Это будет некоторый плоский многоугольник. Затем из вершин многоугольника Р проводятся боковые ребра призмы в виде параллельных отрезков равной длины. Концы этих отрезков соединяются, и получается другое основание призмы. Невидимые ребра проводятся штриховыми линиями.

Сечения призмы плоскостями, параллельными боковым ребрам, являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани (рис. 8).

На практике, в частности, при решении задач часто приходится строить сечение призмы плоскостью, проходящей через заданную прямую g на плоскости одного из оснований призмы. Такая прямая называется следом секущей плоскости на плоскости основания. Для построения сечения призмы достаточно построить отрезки пересечения секущей плоскости с гранями призмы. Покажем, как строится такое сечение, если известна какая-нибудь точка А на поверхности призмы, принадлежащая сечению (рис. 9).

Если данная точка А принадлежит другому основанию призмы, то его пересечение с секущей плоскостью представляет собой отрезок ВС, параллельный следу g и содержащий данную точку А (рис. 9, а).

Если данная точка А принадлежит боковой грани, то пересечение этой грани с секущей плоскостью строится, как показано на рисунке 9,б. Именно: сначала строится точка D, в которой плоскость грани пересекает заданный след g. Затем проводится прямая через точки А и D. Отрезок ВС прямой AD на рассматриваемой грани и есть пересечение этой грани с секущей плоскостью. Если грань, содержащая точку А, параллельна следу g, то секущая плоскость пересекает эту грань по отрезку ВС, проходящему через точку А и параллельному прямой g.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с нашей секущей плоскостью. И т. д.

На рисунке 10 показано построение сечения четырехугольной призмы плоскостью, проходящей через прямую а в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной.

У прямой призмы боковые грани являются прямоугольниками. При изображении прямой призмы на рисунке боковые ребра обычно проводят вертикально (рис. 11).

Прямая призма называется правильной, если ее основания являются правильными многоугольниками.

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. .на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S=a1l+a1l+...+anl=pl,

где a1 ,..., an - длины ребер основания, р - периметр основания призмы, а 1 - длина боковых ребер. Теорема доказана.

7. Параллелепипед

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани - параллелограммы.

На рисунке 12, а изображен наклонный параллелепипед, а на рисунке 12, б - прямой параллелепипед.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

Т е о р е м а 19.2. У параллелепипеда противолежащие грани параллельны, и равны.

Доказательство. Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например А1А2А"2А"1 и A3A4A"4A"3. (рис. 13). Так как все грани параллелепипеда - параллелограммы, то прямая A1A2 параллельна прямой А4А3, а прямая А1А"1 параллельна прямой А4А4". Отсюда следует, что плоскости рассматриваемых граней параллельны.

Из того, что грани параллелепипеда - параллелограммы, следует, что отрезки А1А4, А1"А4", A"2A"3 и A2A3 - параллельны и равны. Отсюда заключаем, что грань А1А2А"2А"1 совмещается параллельным переносом вдоль ребра А1А4. с гранью А3А4А"4А"3. Значит, эти грани равны.

Аналогично доказывается параллельность и равенство любых других противолежащих граней параллелепипеда. Теорема доказана.

8. Центральная симметрия параллелепипеда

Теорема 19.3. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Доказательство. Рассмотрим какие-нибудь две диагонали параллелепипеда, например А1А"3 и A4A"2 (рис. 14). Так как четырехугольники А1А2А3А4 и A2A"2A"3A3 - параллелограммы с общей стороной A2A3, то их стороны А1А4 и A"2A"3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A1A"2 и A4A"3. Следовательно, четырехугольник A4A1A"2A"3- параллелограмм. Диагонали параллелепипеда A1A"3 и A4A"2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.

Аналогично доказывается, что диагонали A1A"3 и A2A"4, а также диагонали A1A"3 и A3A"1 пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Теорема доказана.

Из теоремы 19.3 следует, что точка пересечения диагоналей параллелепипеда является его центром симметрий.

9. Прямоугольный параллелепипед

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани - прямоугольники.

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). У прямоугольного параллелепипеда три измерения.

Теорема 19.4. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Доказательство. Рассмотрим прямоугольный параллелепипед ABCDA"B"C"D" (рис. 15). Из прямоугольного треугольника AC"C по теореме Пифагора получаем:

AC"2 = AC2 + CC"2.

Из прямоугольного треугольника АСВ по теореме Пифагора получаем

АС2 = АВ2 + ВС2.

Отсюда AC"2 =CC"2 +AB2 + BC2.

Ребра АВ, ВС и СС" не параллельны, а, следовательно, их длины являются линейными размерами параллелепипеда. Теорема доказана.

10. Симметрия прямоугольного параллелепипеда

У прямоугольного параллелепипеда, как у всякого параллелепипеда, есть центр симметрии - точка пересечения его диагоналей. У него есть также три плоскости симметрий, проходящие через центр симметрии параллельно граням. На рисунке 16 показана одна из таких плоскостей. Она проходит через середины четырех параллельных ребер параллелепипеда. Концы ребер являются симметричными точками.

Если у параллелепипеда все линейные размеры разные, то у него нет других плоскостей симметрии, кроме названных.

Если же у параллелепипеда два линейных размера равны, то у него есть еще две плоскости симметрии. Это плоскости диагональных сечений, показанные на рисунке 17.

Если у параллелепипеда все линейные размеры равны, т. е. он является кубом, то у него плоскость любого диагонального сечения является плоскостью симметрии. Таким образом, у куба девять плоскостей симметрии.

11. Пирамида

Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания,- вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания (рис. 18).

Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами.

Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань - треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды.

Высотой пирамиды, называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида называется n-угольной, если ее основанием является n-угольник. Треугольная пирамида называется также тетраэдром.

У пирамиды, изображенной на рисунке 18, основание - многоугольник А1А2 …An, вершина пирамиды – S, боковые ребра - SА1, S А2, …, S Аn, боковые грани – DSА1А2, DSА2А3, ... .

В дальнейшем мы будем рассматривать только пирамиды с выпуклым многоугольником в основании. Такие пирамиды являются выпуклыми многогранниками.

12. Построение пирамиды и ее плоских сечений

В соответствии с правилами параллельного проектирования изображение пирамиды строится следующим образом. Сначала строится основание. Это будет некоторый плоский многоугольник. Затем отмечается вершина пирамиды, которая соединяется боковыми ребрами с вершинами основания. На рисунке 18 показано изображение пятиугольной пирамиды.

Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники (рис. 19). В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды (рис. 20).

Сечение пирамиды плоскостью с заданным следом g на плоскости основания строится так же, как и сечение призмы.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Если на грани, не параллельной следу g, известна какая-нибудь точка А, принадлежащая сечению, то сначала строится пересечение следа g секущей плоскости с плоскостью этой грани - точка D на рисунке 21. Точка D соединяется с точкой А прямой. Тогда отрезок этой прямой, принадлежащий грани, есть пересечение этой грани с секущей плоскостью. Если точка А лежит на грани, параллельной следу g, то секущая плоскость пересекает эту грань по отрезку, параллельному прямой g. Переходя к соседней боковой грани, строят ее пересечение с секущей плоскостью и т. д. В итоге получается требуемое сечение пирамиды.

На рисунке 22 построено сечение четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из ее боковых ребер.

13. Усеченная пирамида

T е о р е м а 19.5. Плоскость, пересекающая пирамиду и параллельная ее основанию, отсекает подобную пирамиду.

Доказательство. Пусть S - вершина пирамиды, А - вершина основания и А"- точка пересечения секущей плоскости с боковым ребром SA (рис. 23). Подвергнем пирамиду преобразованию гомотетии относительно вершины S с коэффициентом гомотетии

При этой гомотетии плоскость основания переходит в параллельную плоскость, проходящую через точку А", т. е. в секущую плоскость, а следовательно, вся пирамида - в отсекаемую этой плоскостью часть. Так как гомотетия есть преобразование подобия, то отсекаемая часть пирамиды является пирамидой, подобной данной. Теорема доказана.

По теореме 19.5 плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает от нее подобную пирамиду. Другая часть представляет собой многогранник, который называется усеченной пирамидой (рис. 24). Грани усеченной пирамиды, лежащие в параллельных плоскостях, называются основаниями; остальные грани называются боковыми гранями. Основания усеченной пирамиды представляют собой подобные (более того, гомотетичные) многоугольники, боковые грани - трапеции.

14. Правильная пирамида

Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани - равные равнобедренные треугольники.

Высота боковой грани правильной пирамиды, проведенная из её вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей ее боковых граней.

Т е о р е м а 19.6. Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему.

Доказательство. Если сторона основания а, число сторон п, то боковая поверхность пирамиды равна:

(а1/2)ап=а1п/2= р1/2"

где I - апофема, a p - периметр основания пирамиды. Теорема доказана.

Усеченная пирамида, которая получается из правильной пирамиды, также называется правильной. Боковые грани правильной усеченной пирамиды - равные равнобокие трапеции; их высоты называются апофемами.

15. Правильные многогранники

Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.)

Существует пять типов правильных выпуклых многогранников (рис.25): правильный тетраэдр (1), куб (2), октаэдр (3), додекаэдр (4); икосаэдр (5).

У правильного тетраэдра грани - правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны.

У куба все грани - квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными ребрами.

У октаэдра грани - правильные треугольники, но в отличие от тетраэдра в каждой его вершине сходится по четыре ребра.

У додекаэдра грани - правильные пятиугольники. В каждой вершине сходится по три ребра.

У икосаэдра грани - правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.

III. Практическая часть.

Задача 1.

Из точек А и В, лежащих в гранях двугранного угла, опущены перпендикуляры АА\ и ВВ\ на ребро угла. Найдите длину отрезка АВ, если АА1=а, ВВ1=b, А1В1=с и двугранный угол равен а (рис. 26).

Решение. Проведем прямые A1C||BB1 и ВС||А1В1. Четырехугольник А1В1ВС - параллелограмм, значит АА1==ВВ1=b. Прямая А1В1 перпендикулярна плоскости треугольника АA1C, так как она перпендикулярна двум прямым в этой плоскости АА1 и СА1. Следовательно, параллельная ей прямая ВС тоже перпендикулярна этой плоскости. Значит, треугольник АВС - прямоугольный с прямым углом С. По теореме косинусов

AC2=AA12+A1C2-2AA1 A1C cos a=a2+b2-2abcos a.

По теореме Пифагора

АВ =AC2 + ВС2 = a2 + b2- 2ab cos a + с2.

Задача 2.

У трехгранного угла (abc) двугранный угол при ребре с прямой, двугранный угол при ребре b равен j, а плоский угол (bс) равен g (j, g

Решение. Опустим из произвольной точки А ребра а перпендикуляр АВ на ребро b и перпендикуляр АС на ребро с (рис. 27). По теореме о трех перпендикулярах СВ - перпендикуляр к ребру b.

Из прямоугольных треугольников ОАВ, ОСВ, АОС и АВС получаем:

tg a =AB/OB=(BC/ cos j)/(BC/tg g)= tg g/ cos j

tg b =AC/OC=BC tg j / (BC/sin g)= tg g sin g

Задача 3 .

В наклонной призме проведено сечение, перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 28). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Задача 4.

Боковое ребро пирамиды разделено на четыре равные части и через точки деления проведены плоскости, параллельные основанию. Площадь основания равна 400 см2. Найдите площади сечений.

Решение. Сечения подобны основанию пирамиды с коэффициентами подобия ¼, 2/4, и ¾. Площади подобных фигур относятся как квадраты линейных размеров. Поэтому отношения площадей сечений к площади основания пирамиды есть (¼)2, (2/4)2, и (¾)2. Следовательно, площади сечений равны

400 (¼)2 =25 (см2),

400 (2/4)2 =100 (см2),

400 (¾)2 =225 (см2).

Задача 5.

Докажите, что боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

Решение. Боковые грани усеченной пирамиды - трапеции с одним и тем же верхним основанием а, нижним b и высотой (апофемой) l. Поэтому площадь одной грани равна ½ (а + b)l. Площадь всех граней, т. е. боковая поверхность, равна ½ (аn + bn)l, где n - число вершин у основания пирамиды, an и bn - периметры оснований пирамиды.

IV. Заключение

Благодаря этой работе я обобщила и систематизировала знания, полученные за курс обучения в 11 классе , ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике.

Хочу отметить 3 наиболее понравившиеся мне книги:. «Геометрия», Г. Якушева «Математика - справочник школьника», «За страницами учебника геометрии». Эти книги помогли мне больше, чем другие.

Мне бы хотелось чаще использовать свои новые полученные знания на практике.

V. Литература

1. «Геометрия». – М.: Просвещение, 1992

2. Г. Якушева «Математика - справочник школьника». М.: Слово, 1995

3. «Курс математического анализа» т.1, Москва 1981

4. «За страницами учебника геометрии». – М.: Просвещение, 1990


Министерство общего и профессионального образования
Свердловской области

МОУО

Образовательное учреждение:

Образовательная область: естественнонаучная
Предмет: математика

Тема исследовательского проекта:
«Правильные многогранники»

                Исполнитель:
                Руководитель:
                Внешний рецензент:
2010 г.

Содержание:
Введение 3-4
Глава 1. Элементы теории правильных многогранников 5-10
§ 1. Определение многогранника и его элементов 5-6
§ 2. Пять правильных многогранников 7-8
§ 3. Теорема Эйлера 9
Глава 2. Исследования правильных многогранников в
период до нашей эры 10-12
Глава 3. Исследования правильных многогранников
в XVI – XIX вв. 13-15
Глава 4. Правильные многогранники в нашей жизни 16-18
§ 1. Многогранники вокруг нас 16-17
§ 2. Правильные многогранники в искусстве 18
Примеры задач 19-22
Заключение 23-24
Приложения 25-34
Список литературы 35

Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

Гипотеза:
если выстроить хронологически события исследований правильных многогранников, то можно выявить основные этапы и особенности изучения Платоновых тел
Объект исследования:
правильные многогранники (Платоновы тела)
Предмет исследования:
основная периодизация исследований правильных многогранников, основные составляющие исследований, их взамосвязь.
Основная цель данного проекта – познакомиться с понятием правильных многогранников и выявить основные особенности исследования Платоновых тел.
Постановка такой цели предопределила формулировку следующих задач:

    Изучить историю открытий в области правильных многогранников
    Определить основные этапы исследований Платоновых тел, их содержание, взаимосвязь
    Выявить и охарактеризовать основные составляющие исследований правильных многогранников, их динамику и особенности

Глава 1
Элементы теории правильных многогранников

§ 1. Определение многогранника и его элементов

Определение : многогранником называется поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
Многогранники делятся на выпуклые и невыпуклые
Определение : выпуклым многогранником называется такой многогранник, что если взять плоскость любой его грани, то весь многогранник окажется по одну сторону от этой плоскости
Выпуклые многогранники, в свою очередь, делятся на неправильные и правильные
Определение: Правильный многогранник, или Платоново тело - это выпуклый многогранник с максимально возможной симметрией.
Многогранник называется правильным, если:
1 он выпуклый
2 все его грани являются равными правильными многоугольниками
3 в каждой его вершине сходится одинаковое число рёбер 1
Всего существует 5 правильных многогранников (тетраэдр, куб, октаэдр, додекаэдр, икосаэдр), доказательство этого факта я рассмотрю в следующем параграфе
Таблица 1

Правильный многогранник Число
Граней Вершин Ребер
Тетраэдр Куб
Октаэдр
Додекаэдр
Икосаэдр
4 6
8
12
20
4 8
6
20
12
6 12
12
30
30

В Таблице 1 приведены сведения о числе граней, ребер и вершин правильных многогранников

§ 2. Пять правильных многогранников

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало , - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук ".
Каково же это вызывающе малое количество и почему их именно столько. А сколько? Оказывается, ровно пять - ни больше ни меньше. Рассмотрим доказательство данного факта. 2
Докажем, что не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при n больше либо равным шести.
В самом деле, угол правильного n-угольника при n больше либо равным шести не меньше 120 градусов (углы между сторонами правильного многоугольника не меньше 180-360/p градусов (где p-число ребер)). С другой стороны, при каждой вершине многогранника должно быть не менее трех плоских углов. Поэтому если бы существовал правильный многогранник, у которого грани – правильные n-угольники при n больше либо равным шести, то сумма плоских углов при каждой вершине такого многогранника была бы не меньше, чем 120 * 3 = 360 градусов. Но это не возможно, так как сумма всех плоских углов при каждой вершине выпуклого многогранника меньше 360 градусов. 3
Мы доказали, что существует пять и только пять правильных выпуклых многогранников. Доказательство того, что больше не может быть, содержится в «Началах» Евклида, причем автором этого доказательства считается Теэтет. Известно, что в течение нескольких лет Теэтет состоял в Академии и был близок к Платону, и этой близостью можно объяснить то обстоятельство, что Платон оказался знакомым с новейшими в то время открытиями в области стереометрии 4 .

§ 3. Теорема Эйлера

Теорема Эйлера для многогранников - теорема, устанавливающая связь между числом вершин, рёбер и граней для многогранников, топологически эквивалентных сфере.
Рассматривая табл. 1, зададимся вопросом: «нет ли закономерности в возрастании чисел в каждом столбце?» По-видимому, нет. Вот в столбце «грани» все сначала пошло хорошо (4 + 2 = 6, 6 + 2 = 8), а потом намеченная закономерность «провалилась» (8 + 2). В столбце «вершины» нет даже стабильного возрастания. Число вершин то возрастает (от 4 до 8, от 6 до 20), а то и убывает (от 8 до 6, от 20 до 12). В столбце «ребра» закономерности тоже не видно.
Мы сравнивали числа внутри одного столбца. Но можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах «грани» и «вершины» (Г + В). Сравним новую таблицу своих подсчетов (см. табл. 2).
Таблица № 2

Правильный многогранник
Число
Граней и вершин (Г + В) Ребер (Р)
Тетраэдр Куб
Октаэдр
Додекаэдр
Икосаэдр
4 + 4 = 8 6 + 8 = 14
8 + 6 = 14
12 + 20 = 32
20 + 12 = 32
6 12
12
30
30

Вот теперь закономерность видна.
Сформулируем ее так: «Сумма числа граней и вершин равна числу ребер, увеличенному на 2»: Г + В = Р + 2 .
Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников. 5

Глава 2
Исследования правильных многогранников в период до нашей эры

Названия правильных многогранников пришли из Древней Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник". "двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным. 6
В рамках этого этапа, на мой взгляд, можно выявить две основных составляющих:
1. Теория «4 стихий» Платона
2. Построение правильных многоугольников Евклидом
Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь. Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в Платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин Платоновых тел, ни объемы правильных многогранников, ни число ребер или граней.
В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным. 7
Эвклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2m сторонами (при целом m > 1), имея уже построенный многоугольник с числом сторон 2m - 1: пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее. Кроме этого, в той же книге Евклид указывает и второй критерий: если известно, как строить многоугольники с r и s сторонами, и r и s взаимно простые, то можно построить и многоугольник с r · s сторонами. Синтезируя эти два способа, можно прийти к выводу, что древние математики умели строить правильные многоугольники со сторонами, где m - целое неотрицательное число, p1,p2 - числа 3 и 5, а k1,k2 принимают значения 0 или 1.
Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства.
Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора.
Отличительным знаком пифагорейцев была пентаграмма, на языке математики - это правильный невыпуклый или звездчатый пятиугольник.
Пентаграмме присваивалось способность защищать человека от злых духов. Существование только пяти правильных многогранников относили к строению материи и Вселенной. Пифагорейцы, а затем Платон полагали, что материя состоит из четырех основных элементов: огня, земли, воздуха и воды.
Средневековая математика почти никак не продвинулась в вопросе построения правильных многогранников. Начался новый период изучения правильных многогранников, который я рассмотрю в следующей главе.

Глава 3
Исследования правильных многогранников в XVI – XIX вв.

А теперь от Древней Греции перейдём к Европе XVI – XVII вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571-1630). Представим себя на месте Кеплера. Перед ним различные таблицы – столбики цифр. Это результаты наблюдений движения планет Солнечной системы – как его собственных, так и великих предшественников – астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера.
В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Результаты своих вычислений учёный опубликовал в книге «Тайна мироздания». Он считал, что тайна Вселенной раскрыта. Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних растояний от Солнца.
Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука. 8
Кроме полуправильных многогранников, из правильных многогранников – Платоновых тел можно получить так называемые правильные звездчатые многогранники . Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.), а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.). Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. В работе «О многоугольниках и многогранниках» (1810 г.) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20. Ответ на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг.) в работе «Исследование о многогранниках». В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр). 9
Таким образом, в рамках второго этапа исследований можно выявить 3 составляющих:

    «Космический кубок» Кеплера
    Работа «О многоугольниках и многогранниках» и теория правильных звездчатых многогранников Луи Пуансо
    Работа «Исследование многогранников» Луи Коши
Луи Кэрролл писал: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".
В глубины, каких наук пробрались правильные многогранники? Где в жизни мы можем их повстречать? На этот вопрос постараемся дать ответ в следующей главе

Глава 4
Правильные многогранники в нашей жизни
§ 1. Многогранники вокруг нас
Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба.
При производстве алюминия пользуются алюминиево-калиевыми кварцами (K ? 12H2O), монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий (Na5(SbO4(SO4)) – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.
Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр.
Чем же вызвана такая природная геометризация феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.
Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.
Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих
объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.
Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место. 10
Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию.
§ 2. Правильные многогранники в искусстве
В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы. архитекторы, художники. Леонардо да Винчи (1452 -1519) например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал правильными и полуправильными многогранниками книгу Монаха Луки Пачоли ""О божественной пропорции.""
Знаменитый художник эпохи возрождения Альбрехт Дюрер на переднем плане своей гравюры «Меланхолия» изобразил додекаэдр. В 1525 году он написал трактат, в котором представил, пять правильных многогранников, поверхности которых служат хорошими моделями перспективы
Сальвадор Дали использует в своей картине «Тайная вечеря» додекаэдр, который служит своеобразным «окном» в окружающий мир и подчеркивает важность этого события.

Примеры задач
Задача 1 Можно ли десять городов соединить между собой непересекающимися дорогами так, чтобы из каждого города выходило пять дорог, ведущих в пять других городов?

Решение Предположим, что города можно соединить между собой дорогами так, как указано в задаче. В таком случае, если какие-то два города окажутся не соединенными дорогой непосредственно, то найдётся третий город, который уже будет непосредственно соединён с каждым из них. Изобразив на плоскости города точками, а дороги - дугами, получим, что любые две точки соединены цепочкой дуг. Так как в каждой точке сходятся пять дуг, то общее число дуг равно?·5·10 = 25. Согласно теореме Эйлера эти дуги делят плоскость на 2 + 25 – 10 = 17 областей. Каждая из этих семнадцати областей ограничена по крайней мере тремя дугами, так как в противном случае нашлись бы два города, непосредственно соединённые по крайней мере двумя дорогами, а это противоречит условию задачи. Следовательно, число дуг не меньше?·3·17 = 25,5. Таким образом, исходное предположение приводит нас к противоречию, и города нельзя соединить между собой так, как это требуется в задаче. 11

Задача 2 Три поссорившихся соседа имеют три общих колодца. Можно ли провести непересекающиеся дорожки от каждого дома к каждому колодцу?

Решение Предположим, что это сделать можно.

Изобразим дома синими, а колодцы - чёрными точками и каждую синюю точку соединим дугой с каждой чёрной точкой так, чтобы девять полученных дуг попарно не пересекались. Тогда всякие две точки, изображающие дома или колодцы, будут соединены цепочкой дуг, и в силу теоремы Эйлера эти девять дуг разделят плоскость на 9–6+2=5 областей. Каждая из пяти областей ограничена по крайней мере четырьмя дугами, так как по условию задачи ни одна из дорожек не должна непосредственно соединять два дома или два колодца. Поэтому число дуг должно быть не меньше?·5·4 = 10, и, следовательно, наше предположение неверно. 12

Задача 3 Докажите, что на всякой карте найдётся страна, граничащая не более чем с пятью странами.

Решение. Если число стран на карте не превосходит шести, то утверждение задачи очевидно. Мы докажем, что на карте, имеющей более шести стран, найдутся даже четыре страны, каждая из которых граничит не более чем с пятью странами. Окрасим вершины и дуги исходной карты в чёрный цвет, а красной краской отметим в каждой стране по одной точке. Всякие две отмеченные точки, лежащие в соседних странах (то есть странах, имеющих общую граничную дугу), соединим внутри этих стран красной дугой так, чтобы красные дуги попарно не пересекались. Тогда всякие две красные точки будут соединены цепочкой дуг, и так как никакие две построенные дуги не будут соединять одни и те же точки, то каждая страна на карте, состоящей из точек и дуг красного цвета, будет ограничена не менее чем тремя дугами. Если какая-то страна на этой карте ограничена более чем тремя дугами, то на её границе можно выбрать две вершины, не соединённые дугой, и соединить их красной дугой внутри этой страны. Повторяя несколько раз эту операцию, мы получим красную карту, на которой каждая страна ограничена ровно тремя дугами. Так как, кроме того, на этой карте никакие две дуги не соединяют одни и те же вершины и так как число вершин больше трёх, то из каждой вершины выходят не менее чем три дуги. Обозначим через n число дуг, через l - число стран, через m - число всех вершин красной карты и через a - число вершин, из которых выходят менее чем шесть дуг. Тогда получим3l = 2n, (1)
и т.д.................

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

Каково же это вызывающе малое количество и почему их именно столько. А сколько? Оказывается, ровно пять - ни больше ни меньше. Подтвердить это можно с помощью развертки выпуклого многогранного угла. В самом деле, для того чтобы получить какой-нибудь правильный многогранник согласно его определению, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360 о, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к < 360, 90к < 360 и 108к < 360, можно доказать, что правильных многогранников ровно пять (к - число плоских углов, сходящихся в одной вершине многогранника), рис.1.

Названия правильных многогранников пришли из Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник". "двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода=воздух/огонь . Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин платоновых тел, ни обьемы правильных многогранников, ни число ребер или граней.

В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.

Важное место занимали правильные многогранники в системе гармоничного устройства мира И. Кеплера. Все та же вера в гармонию, красоту и математически закономерное устройство мироздания привела И. Кеплера к мысли о том, что поскольку существует пять правильных многогранников, то им соответствуют только шесть планет. По его мнению, сферы планет связаны между собой вписанными в них платоновыми телами. Поскольку для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором будет находиться Солнце.

Проделав огромную вычислительную работу, в 1596 г. И. Кеплер в книге "Тайна мироздания" опубликовал результаты своего открытия. В сферу орбиты Сатурна он вписывает куб, в куб - сферу Юпитера, в сферу Юпитера - тетраэдр, и так далее последовательно вписываются друг в друга сфера Марса - додекаэдр, сфера Земли - икосаэдр, сфера Венеры - октаэдр, сфера Меркурия. Тайна мироздания кажется открытой.

Сегодня можно с уверенностью сказать, что расстояния между планетами не связаны ни с какими многогранниками. Впрочем, возможно, что без "Тайны мироздания", "Гармонии мира" И. Кеплера, правильных многогранников не было бы трех знаменитых законов И. Кеплера, которые играют важную роль в описании движения планет.

Где еще можно увидеть эти удивительные тела? В очень красивой книге немецкого биолога начала нашего века Э. Геккеля "Красота форм в природе" можно прочитать такие строки: "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы". Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видно и одноклеточные организмы - феодарии, форма которых точно передает икосаэдр. Чем же вызвана такая природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший обьем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов (KAlSO4)2 12Н2О имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор - икосаэдра. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Проиллюстрирую эту мысль следующей задачей.

Задача. Модель молекулы метана CH4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре - атом углерода. Определить угол связи между двумя СН связями.

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра (рис.2). Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости. Искомый угол j между двумя СН связями равен углу АОС. Треугольник АОС-равнобедренный. Отсюда, где а - сторона куба, d- длина диагонали боковой грани или ребро тетраэдра. Итак, откуда =54,73561 О и j= 109,47 О

Идеи Пифагора, Платона, И. Кеплера о связи правильных многогранников с гармоничным устройством мира уже в наше время нашли свое продолжение в интересной научной гипотезе, авторами которой (в начале 80-х годов) явились московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли (рис.3), проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Итак, было выяснено, что правильных многогранников ровно пять. А как определить в них количество ребер, граней, вершин? Это нетрудно сделать для многогранников с небольшим числом ребер, а как, например, получить такие сведения для икосаэдра? Знаменитый математик Л. Эйлер получил формулу В+Г-Р=2, которая связывает число вершин /В/, граней /Г/ и ребер /Р/ любого многогранника. Простота этой формулы заключается в том, что она не связана ни с расстоянием, ни с углами. Для того чтобы определить число ребер, вершин и граней правильного многогранника, найдем сначала число к=2у - ху+2х, где х - число ребер, принадлежащих одной грани, у - число граней, сходящихся в одной вершине. Для нахождения количества граней, вершин и ребер правильного многогранника используем формулы. После этого нетрудно заполнить таблицу, в которой приведены сведения об элементах правильных многогранников:

многогранник Г В Р

тетраэдр 4-4-6

гексаэдр 6-8-12

октаэдр 8-6-12

додекаэдр 12-20-30

икосаэдр 20-12-30

И еще один вопрос возникает в связи с правильными многогранниками: можно ли ими заполнить пространство так, чтобы между ними не было просветов? Он возникает по аналогии с правильными многоугольниками, некоторыми из которых можно заполнить плоскость. Оказывается, заполнить пространство можно только с помощью одного правильного многогранника-куба. Пространство можно заполнить и ромбическими додекаэдрами. Чтобы это понять, надо решить задачу.

Задача. С помощью семи кубов, образующих пространственный "крест", постройте ромбододекаэдр и покажите, что ими можно заполнить пространство.

Решение. Кубами можно заполнить пространство. Рассмотрим часть кубической решетки, изображенной на рис.4. Средний куб оставим нетронутым, а в каждом из "окаймляющих" кубов проведем плоскости через все шесть пар противолежащих ребер. При этом "окаймляющие" кубы разобьются на шесть равных пирамид с квадратными основаниями и боковыми ребрами, равными половине диагонали куба. Пирамиды, примыкающие к нетронутому кубу, и образуют вместе с последним ромбический додекаэдр. Отсюда ясно, что ромбическими додекаэдрами можно заполнить все пространство. Как следствие получаем, что объем ромбического додекаэдра равен удвоенному объему куба, ребро которого совпадает с меньшей диагональю грани додекаэдра.

Решая последнюю задачу, мы пришли к ромбическим додекаэдрам. Интересно, что пчелиные ячейки, которые также заполняют пространство без просветов, также являются в идеале геометрическими фигурами. Верхняя часть пчелиной ячейки представляет собой часть ромбододекаэдра.

Итак, правильные многогранники открыли нам попытки ученых приблизиться к тайне мировой гармонии и показали неотразимую привлекательность геометрии.


Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
«Поволжская государственная социально-гуманитарная академия»

Факультет начального образования

Реферат

Многогранник. Изучение многогранника

в начальной школе.

Выполнила: студентка

51группы ФНО

Петрушина О.В.

САМАРА 2009

Введение…………………………………………………………………….4

Основные понятия………………………………………………………….6

Исторические сведения о правильных многогранниках……………..….9

Формула Эйлера…………………………………………………………...13

Правильные многогранники вокруг нас………………………………....14

Заключение………………………………………………………………...18

Список литературы…………………………………………………...…...20

Введение

Тема «Многогранники» одна из основных в традиционном курсе школьной геометрии. Они составляют, можно сказать, центральный предмет стереометрии. Изучение параллельных и перпендикулярных прямых и плоскостей, двугранных углов и другое, так же как введение векторов и координат,- все это только начала стереометрии, подготовка средств для исследования ее более содержательных объектов – главным образом тел и поверхностей.
Центральная роль многогранников определяется прежде всего тем, что многие результаты, относящиеся к другим телам, получаются исходя из соответствующих результатов для многогранников; Достаточно вспомнить определение объемов тел и площадей поверхностей путем предельного перехода от многогранников.
Кроме того, многогранники сами по себе представляют чрезвычайно содержательный предмет исследования, выделяясь среди всех тел многими интересными свойствами, специально к ним относящимися теоремами и задачами. Можно, например, вспомнить теорему Эйлера о числе граней, ребер и вершин, симметрию правильных многогранников, вопрос о заполнении пространства многогранниками и др.
Многогранникам должно быть уделено в школьном курсе больше внимания еще и потому, что они дают особенно богатый материал для развития пространственных представлений, для развития того соединения живого пространственного воображения со строгой логикой, которое составляет сущность геометрии. Уже самые простые факты, касающиеся многогранников, требуют такого соединения, которое оказывается при этом не совсем легким делом. Даже такой простой факт, как пересечение диагоналей параллелепипеда в одной точке, требует усилия воображения, чтобы его увидеть наглядно, и нуждается в строгом доказательстве.
Более того, использование многогранников с самого начала изучения стереометрии служит различным дидактическим целям. На многогранниках удобно демонстрировать взаимное расположение прямых и плоскостей в пространстве, показывать применение признаков параллельности и перпендикулярности прямых и плоскостей в пространстве. Иллюстрация первых теорем стереометрии на конкретных моделях повышает интерес учащихся к предмету.
Также одной из основных задач обучения математики является развитие у учащихся абстрактного мышления. Этой цели в значительной мере способствует применение наглядных пособий, причем не только в младших классах, но и в старших. Широкие возможности для реализации этой цели предоставляет тема «Многогранники», в частности, самостоятельное изготовление учениками наглядных пособий. В процессе изготовления моделей многогранников, кроме теоретических знаний и навыков, ученики закрепляют сформировавшиеся новые понятия при помощи чертежа и фактического решения задач на построение. При самостоятельном изготовлении моделей образ создается по частям, в силу этого с ними можно производить различные манипуляции. При этом все их свойства и особенности легко познаются и прочно закрепляются в памяти учащихся.

Основные понятия.

    Многогранник – это геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями.

Стороны граней – рёбра многогранника, а концы рёбер – вершины многогранника. По числу граней различают четырёхгранники, пятигранники и т. д.

    Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости, каждой из его граней.

    Выпуклый многогранник называется правильным, если все его грани – одинаковые правильные многоугольники, в каждой вершине сходится одно и то же число рёбер, а соседние грани образуют равные углы.

На рисунке изображены тетраэдр, гексаэдр, октаэдр, додекаэдр и икосаэдр. Их форма – образец совершенства! А почему правильные многогранники получили именно такое название? Какими особенностями они обладают? Как изготовить модель какого-либо правильного многогранника? Где можно встретить эти удивительные тела?

Ответить на эти и другие вопросы: цель данной работы.


Все правильные многогранники имеют разное число граней и названия получили по этому числу.

    Тетраэдр (от,тетра”– четыре и греческого,hedra” – грань) составлен из 4-х правильных треугольников, в каждой его вершине сходятся 3 ребра.

    Гексаэдр (от греческого,гекса” – шесть и,hedra” – грань) имеет 6 квадратных граней, в каждой его вершине сходятся 3 ребра.

Гексаэдр больше известен как куб (от латинского, cubus” ; от греческого,kubos”.

    Октаэдр (от греческого okto – восемь и hedra – грань) имеет 8 граней (треугольных), в каждой вершине сходятся 4 ребра.

    Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) имеет 12 граней (пятиугольных), в каждой вершине сходятся 3 ребра.

    Икосаэдр (от греческого eikosi – двадцать и hedra – грань) имеет 20 граней (треугольных), в каждой вершине сходится 5 рёбер. (5, с.267-269)

Оказывается, что правильных многогранников ровно пять - ни больше ни меньше. Ведь для того, чтобы получить какой-нибудь правильный многогранник, в каждой вершине, согласно его определению, должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником.

Сумма плоских углов многогранного угла должна быть меньше 360 о, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к

Исторические сведения о правильных многогранниках.

Древнегреческий философ Платон, (428 или 427 до н. э. - 348 или 347), проводивший беседы со своими учениками в роще Академа (Академ – древнегреческий мифологический герой, которого, по преданию, похоронили в священной роще недалеко от Афин, откуда и пошло название,академия”), одним из девизов своей школы провозгласил: , Не знающие геометрии не допускаются!”

Правильные многогранники называют также Платоновыми телами. Хотя их знаки пифагорейцы за несколько веков до Платона.

В диалоге,Тимей’’ он связал правильные многогранники с четырьмя основными стихиями. Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным. Хотя правильные многогранники были известны пифагорейцам за несколько веков до Платона, их называют платоновыми телами. (4, с.340)

Важное место занимали правильные многогранники в системе гармоничного устройства мира И. Кеплера.

Если наблюдать и рассматривать многогранные формы, то можно не только почувствовать их красоту, но и обнаружить некоторые закономерности, возможно, имеющие прикладное значение.

Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов.

Кристаллы - тела, имеющие многогранную форму. Вот один из примеров таких тел: кристалл пирита (сернистый колчедан FeS) - природная модель додекаэдра. Пирит (от греч. “пир” - огонь) - сернистое железо или серный колчедан, наиболее распространенный минерал из группы сульфидов. Размеры кристаллов пирита часто достигают нескольких сантиметров и являются хорошим коллекционным материалом. От других подобных ему минералов отличается твердостью: царапает стекло.

Замечено, что наша матушка-Земля последовательно проходит эволюцию правильных объемных фигур. Существует много данных о сравнении структур и процессов Земли с вышеуказанными фигурами. Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозою - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово - додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро - додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласно додекаэдро - икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.).

С позиций изучения симметрии, учитывая представление о додекаэдро-икосаэдрическом силовом каркасе Земли как планеты, следует признать, что в этом смысле Земля является живым существом. С душою, которую П.А. Флоренский назвал “пневматосфера”, со свободой воли и разумом.

Додекаэдрическая структура, по мнению Д. Винтера (американского математика), присуща не только энергетическому каркасу Земли, но и строению живого вещества. В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции золотого сечения!

Существует семейство тел, родственных платоновым - это полуправильные выпуклые многогранники, или Архимедовы тела. У них все многогранные углы равны, все грани - правильные многоугольники, но нескольких различных типов. Называют 13 или 14 архимедовых тел (число неточное, поскольку псевдоромбокубоктаэдр иногда не причисляют к этому семейству).

Кроме того, имеют равные многогранные углы и правильные грани нескольких типов тела из двух бесконечных семейств - призмы и антипризмы.

Кеплер Иоганн (Kepler I, 1571-1630г) – немецкий астроном. Открыл законы движения планет. В 1596 году Кеплер предложил правило, по которому вокруг сферы Земли описывается додекаэдр, а в нее вписывается икосаэдр. («Гармония мира», 1619г.) И.Кеплер предположил, что расстояния между орбитами планет можно получить на основании Платоновых тел, вложенных друг в друга. Результаты его расчётов хорошо согласовались с действительными расстояниями между планетными орбитами.

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой небесных сфер, по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна.

Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет - именно шесть планет гармонировали с пятью Платоновыми телами.

Формула Эйлера.

    Подсчитаем число вершин (В), граней (Г), рёбер (Р) запишем результаты в таблицу.

Многогранник

Тетраэдр

Гексаэдр

Додекаэдр

Икосаэдр


В последней колонке для всех многогранников один и тот же результат: В+Г- Р=2. Доказал это удивительное соотношение один из величайших математиков Леонард Эйлер (1707 – 1783), поэтому формула названа его именем: формула Эйлера. Этот гениальный учёный, родившийся в Швейцарии, почти всю жизнь прожил в России, и мы с полным основанием и гордостью можем считать его соотечественником.

Самое удивительное в этой формуле, что она верна не только для правильных многогранников, но и для всех многогранников!

Ради интереса можно проверить это для нескольких наугад взятых многогранников. (3, с.42)


Правильные многогранники вокруг нас.

В книге немецкого биолога начала нашего века Э. Геккеля "Красота форм в природе" можно прочитать такие строки: "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы". Так, например, одноклеточные организмы феодарии, имеют форму икосаэдра.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор - икосаэдра.

Интересная научная гипотеза, авторами которой (в начале 80-х годов) явились московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.


Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место. (2, с.2)

Заключение.

Исследовательская работа была интересной и разнообразной и заставила понять, что мир, окружающий нас, подчиняется законам геометрии.

В рамках работы над рефератом была изучена литература по теме, выявлены особенности правильных многогранников, изготовлены чертежи, развёртки, модели правильных многогранников.

Многогранник в трёхмерном пространстве, совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); от любого из многоугольников, составляющих Многогранник , можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, - к смежному с ним, и т. д. Эти многоугольники называются гранями, их стороны - рёбрами, а их вершины - вершинами Многогранника.

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к правильным многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Форма первоэлемента Земли - куб, Воздуха - октаэдр, Огня - тетраэдр, Воды - икосаэдр, а всему миру творец придал форму пятиугольного додекаэдра. О том, что Земля имеет форму шара, учили Пифагорейцы. По Пифагору, существует 5 телесных фигур: высшее божество само построило Вселенную на основании геометрической формы додекаэдра. Земля подобна Вселенной, и у Платона Земля – тоже додекаэдр.

Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона.
Платон (427–347 до н.э.) – великий древнегреческий философ, основатель Академии и родоначальник традиции платонизма. Одним из существенных черт его учения является рассмотрение идеальных объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, идеальные объекты. Однако и сам Платон, и многие древние математики вкладывали в термин идеальный не только смысл абстрактный, но и смысл наилучший. В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие те, которые имеют своими гранями правильные многоугольники.

Теория многогранников – один из увлекательных и ярких разделов математики. В представленном реферате была рассмотрена только одна часть этой теории. Из правильных многогранников – платоновых тел – можно получить так называемые полуправильные многогранники, или архимедовы тела, гранями которых являются также правильные, но разноимённые многоугольники, а также звёздные правильные тела.

Список литературы

1.Дорофеев Г.В., Петерсон Л.Г. Математика. 6 класс. Часть 3 – М: Баласс, 1988.

2.Шарыгин И. Ф., Ерганжиева Л.Н. Наглядная геометрия.Учебное пособие для V – VI классов. – М: Мирос 1992.

3.Энциклопедия для детей. Т. 11. Математика. – М: Аванта плюс, 2002.

4.Энциклопедия для детей. Я познаю мир.Математика. – М: Издательство АСТ, 1999.

5.Погорелов А.В. Геометрия. Учебное пособие для 7-11 классов. М., Просвещение, 1992.

Главная > Реферат

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №3

РЕФЕРАТ

по геометрии

Тема:

«Многогранники».

Выполнила: ученица 11-«б» классаМОУ СОШ №3Алябьева Юлия.Проверила: преподаватель математикиСергеева Любовь Алексеевна.

г. Железноводск

План

I. Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. Теоретическая часть
    Двугранный угол. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Трехгранный и многогранный углы. . . . . . . . . . . . . . . . 4 Многогранник. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Призма. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Изображение призмы и построение ее сечений. . . . . 7 Прямая призма. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Параллелепипед. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Центральная симметрия параллелепипеда. . . . . . . . 10 Прямоугольный параллелепипед. . . . . . . . . . . . . . . . . . 11
10. Симметрия прямоугольного параллелепипеда. . . . 12 11. Пирамида. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 12. Построение пирамиды и ее плоских сечений. . . . . . 13 13. Усеченная пирамида. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 14. Правильная пирамида. . . . . . . . . . . . . . . . . . . . . . . . . 15 15. Правильные многогранники. . . . . . . . . . . . . . . . . . . . 16 III. Практическая часть. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 IV. Заключение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 V. Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I. Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета. Ни одни геометрические тела не обладают таким совершенством и красотой, как многогранники. "Многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

II. Теоретическая часть.

1. Двугранный угол Двугранным углом называется фигура, образованная двумя "полуплоскостями с общей ограничивающей их прямой (рис. 1). Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла. Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным. углом двугранного угла. За меру двугранного угла принимается мера соответствующего ему линейного угла. Все линейные углы двугранного угла совмещаются параллельным переносом, а значит, равны. Поэтому мера двугранного угла не зависит от выбора линейного угла. 2. Трехгранный и многогранный углы Рассмотрим три луча а, Ь, с, исходящие из одной точки и не лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная "из трех плоских углов (аЬ), (Ьс) и (ас) (рис. 2). Эти углы называются гранями трехгранного угла, а их стороны - ребрами, общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла. Аналогично определяется понятие многогранного угла (рис. 3).

3. Многогранник

В стереометрии изучаются фигуры в пространстве, называемые телами. Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью. Многогранник - это такое тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 4). Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника. Поясним сказанное на примере знакомого вам куба (рис. 5). Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC, .... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,... . Вершинами куба являются вершины квадратов: А, В, С, D, Е, .... У куба шесть граней, двенадцать ребер и восемь вершин.Простейшим многогранникам - призмам и пирамидам, которые будут основным объектом нашего изучения,- мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

4. Призма

Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников (рис. 6). Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины,- боковыми ребрами призмы. Так как параллельный перенос есть движение, то основания призмы равны. Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у призмы основания лежат в параллельных плоскостях.Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны. Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие - соседними боковыми ребрами. Высотой призмы называется расстояние между плоскостями её оснований. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы. Призма называется n-угольной, если ее основания - n-угольники. В дальнейшем мы будем рассматривать только призмы, у которых основания - выпуклые многоугольники. Такие призмы являются выпуклыми многогранниками. На рисунке 6 изображена пятиугольная призма. У нее основаниями являются пятиугольники А 1 А 2 ...А 5 , А 1 А" 2 ...А" 5 . XX" - отрезок, соединяющий соответствующие точки оснований. Боковые ребра призмы-отрезки А 1 А" 2 , А 1 А" 2 , ..., А 5 А" 5 . Боковые грани призмы - параллелограммы А 1 А 2 А" 2 А 1 , А 2 А 3 А 3 А" 2 , ... .

5. Изображение призмы и построение ее сечений

В соответствии с правилами параллельного проектирования изображение призмы строится следующим образом. Сначала строится одно из оснований Р (рис. 7). Это будет некоторый плоский многоугольник. Затем из вершин многоугольника Р проводятся боковые ребра призмы в виде параллельных отрезков равной длины. Концы этих отрезков соединяются, и получается другое основание призмы. Невидимые ребра проводятся штриховыми линиями. Сечения призмы плоскостями, параллельными боковым ребрам, являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани (рис. 8). На практике, в частности, при решении задач часто приходится строить сечение призмы плоскостью, проходящей через заданную прямую g на плоскости одного из оснований призмы. Такая прямая называется следом секущей плоскости на плоскости основания. Для построения сечения призмы достаточно построить отрезки пересечения секущей плоскости с гранями призмы. Покажем, как строится такое сечение, если известна какая-нибудь точка А на поверхности призмы, принадлежащая сечению (рис. 9). Если данная точка А принадлежит другому основанию призмы, то его пересечение с секущей плоскостью представляет собой отрезок ВС, параллельный следу g и содержащий данную точку А (рис. 9, а). Если данная точка А принадлежит боковой грани, то пересечение этой грани с секущей плоскостью строится, как показано на рисунке 9,б. Именно: сначала строится точка D, в которой плоскость грани пересекает заданный след g. Затем проводится прямая через точки А и D. Отрезок ВС прямой AD на рассматриваемой грани и есть пересечение этой грани с секущей плоскостью. Если грань, содержащая точку А, параллельна следу g, то секущая плоскость пересекает эту грань по отрезку ВС, проходящему через точку А и параллельному прямой g.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с нашей секущей плоскостью. И т. д. На рисунке 10 показано построение сечения четырехугольной призмы плоскостью, проходящей через прямую а в плоскости нижнего основания призмы и точку А на одном из боковых ребер. 6. Прямая призма Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной. У прямой призмы боковые грани являются прямоугольниками. При изображении прямой призмы на рисунке боковые ребра обычно проводят вертикально (рис. 11). Прямая призма называется правильной, если ее основания являются правильными многоугольниками. Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований. Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. .на длину бокового ребра. Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S=a 1 l+a 1 l+...+a n l=pl,

где a 1 ,..., a n - длины ребер основания, р - периметр основания призмы, а 1 - длина боковых ребер. Теорема доказана. 7. Параллелепипед Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани - параллелограммы. На рисунке 12, а изображен наклонный параллелепипед, а на рисунке 12, б - прямой параллелепипед. Грани параллелепипеда, не имеющие общих вершин, называются противолежащими. Т е о р е м а 19.2. У параллелепипеда противолежащие грани параллельны, и равны. Доказательство. Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например А1А2А"2А"1 и A3A4A"4A"3. (рис. 13). Так как все грани параллелепипеда - параллелограммы, то прямая A1A2 параллельна прямой А4А3, а прямая А1А"1 параллельна прямой А4А4". Отсюда следует, что плоскости рассматриваемых граней параллельны. Из того, что грани параллелепипеда - параллелограммы, следует, что отрезки А1А4, А1"А4", A"2A"3 и A2A3 - параллельны и равны. Отсюда заключаем, что грань А1А2А"2А"1 совмещается параллельным переносом вдоль ребра А1А4. с гранью А3А4А"4А"3. Значит, эти грани равны. Аналогично доказывается параллельность и равенство любых других противолежащих граней параллелепипеда. Теорема доказана.
8. Центральная симметрия параллелепипеда Теорема 19.3. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Доказательство. Рассмотрим какие-нибудь две диагонали параллелепипеда, например А 1 А" 3 и A 4 A" 2 (рис. 14). Так как четырехугольники А 1 А 2 А 3 А 4 и A 2 A" 2 A" 3 A 3 - параллелограммы с общей стороной A 2 A 3 , то их стороны А 1 А 4 и A" 2 A" 3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A 1 A" 2 и A 4 A" 3 . Следовательно, четырехугольник A 4 A 1 A" 2 A" 3 - параллелограмм. Диагонали параллелепипеда A 1 A" 3 и A 4 A" 2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам. Аналогично доказывается, что диагонали A1A"3 и A2A"4, а также диагонали A1A"3 и A3A"1 пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Теорема доказана. Из теоремы 19.3 следует, что точка пересечения диагоналей параллелепипеда является его центром симметрий. 9. Прямоугольный параллелепипед Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани - прямоугольники. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). У прямоугольного параллелепипеда три измерения. Теорема 19.4. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений. Доказательство. Рассмотрим прямоугольный параллелепипед ABCDA"B"C"D" (рис. 15). Из прямоугольного треугольника AC"C по теореме Пифагора получаем:

AC" 2 = AC 2 + CC" 2 .

Из прямоугольного треугольника АСВ по теореме Пифагора получаем

АС 2 = АВ 2 + ВС 2 .

Отсюда AC" 2 =CC" 2 +AB 2 + BC 2 .

Ребра АВ, ВС и СС" не параллельны, а, следовательно, их длины являются линейными размерами параллелепипеда. Теорема доказана. 10. Симметрия прямоугольного параллелепипеда У прямоугольного параллелепипеда, как у всякого параллелепипеда, есть центр симметрии - точка пересечения его диагоналей. У него есть также три плоскости симметрий, проходящие через центр симметрии параллельно граням. На рисунке 16 показана одна из таких плоскостей. Она проходит через середины четырех параллельных ребер параллелепипеда. Концы ребер являются симметричными точками. Если у параллелепипеда все линейные размеры разные, то у него нет других плоскостей симметрии, кроме названных. Если же у параллелепипеда два линейных размера равны, то у него есть еще две плоскости симметрии. Это плоскости диагональных сечений, показанные на рисунке 17. Если у параллелепипеда все линейные размеры равны, т. е. он является кубом, то у него плоскость любого диагонального сечения является плоскостью симметрии. Таким образом, у куба девять плоскостей симметрии. 11. Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания,- вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания (рис. 18). Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами. Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань - треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды. Высотой пирамиды, называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания. Пирамида называется n-угольной, если ее основанием является n-угольник. Треугольная пирамида называется также тетраэдром. У пирамиды, изображенной на рисунке 18, основание - многоугольник А 1 А 2 …A n , вершина пирамиды – S, боковые ребра - SА 1 , S А 2 , …, S А n , боковые грани – SА 1 А 2 , SА 2 А 3 , ... . В дальнейшем мы будем рассматривать только пирамиды с выпуклым многоугольником в основании. Такие пирамиды являются выпуклыми многогранниками. 12. Построение пирамиды и ее плоских сечений В соответствии с правилами параллельного проектирования изображение пирамиды строится следующим образом. Сначала строится основание. Это будет некоторый плоский многоугольник. Затем отмечается вершина пирамиды, которая соединяется боковыми ребрами с вершинами основания. На рисунке 18 показано изображение пятиугольной пирамиды. Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники (рис. 19). В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды (рис. 20). Сечение пирамиды плоскостью с заданным следом g на плоскости основания строится так же, как и сечение призмы. Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью. Если на грани, не параллельной следу g, известна какая-нибудь точка А, принадлежащая сечению, то сначала строится пересечение следа g секущей плоскости с плоскостью этой грани - точка D на рисунке 21. Точка D соединяется с точкой А прямой. Тогда отрезок этой прямой, принадлежащий грани, есть пересечение этой грани с секущей плоскостью. Если точка А лежит на грани, параллельной следу g, то секущая плоскость пересекает эту грань по отрезку, параллельному прямой g. Переходя к соседней боковой грани, строят ее пересечение с секущей плоскостью и т. д. В итоге получается требуемое сечение пирамиды.
На рисунке 22 построено сечение четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из ее боковых ребер.

13. Усеченная пирамида T е о р е м а 19.5. Плоскость, пересекающая пирамиду и параллельная ее основанию, отсекает подобную пирамиду. Доказательство. Пусть S - вершина пирамиды, А - вершина основания и А"- точка пересечения секущей плоскости с боковым ребром SA (рис. 23). Подвергнем пирамиду преобразованию гомотетии относительно вершины S с коэффициентом гомотетии

При этой гомотетии плоскость основания переходит в параллельную плоскость, проходящую через точку А", т. е. в секущую плоскость, а следовательно, вся пирамида - в отсекаемую этой плоскостью часть. Так как гомотетия есть преобразование подобия, то отсекаемая часть пирамиды является пирамидой, подобной данной. Теорема доказана.

По теореме 19.5 плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает от нее подобную пирамиду. Другая часть представляет собой многогранник, который называется усеченной пирамидой (рис. 24). Грани усеченной пирамиды, лежащие в параллельных плоскостях, называются основаниями; остальные грани называются боковыми гранями. Основания усеченной пирамиды представляют собой подобные (более того, гомотетичные) многоугольники, боковые грани - трапеции. 14. Правильная пирамида Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани - равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из её вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей ее боковых граней. Т е о р е м а 19.6. Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему. Доказательство. Если сторона основания а, число сторон п, то боковая поверхность пирамиды равна:

(а1/2)ап=а1п/2= р1/2"

Где I - апофема, a p - периметр основания пирамиды. Теорема доказана. Усеченная пирамида, которая получается из правильной пирамиды, также называется правильной. Боковые грани правильной усеченной пирамиды - равные равнобокие трапеции; их высоты называются апофемами. 15. Правильные многогранники Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.) Существует пять типов правильных выпуклых многогранников (рис.25): правильный тетраэдр (1), куб (2), октаэдр (3), додекаэдр (4); икосаэдр (5). У правильного тетраэдра грани - правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны. У куба все грани - квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными ребрами. У октаэдра грани - правильные треугольники, но в отличие от тетраэдра в каждой его вершине сходится по четыре ребра. У додекаэдра грани - правильные пятиугольники. В каждой вершине сходится по три ребра. У икосаэдра грани - правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.

III. Практическая часть.

Задача 1. Из точек А и В, лежащих в гранях двугранного угла, опущены перпендикуляры АА\ и ВВ\ на ребро угла. Найдите длину отрезка АВ, если АА 1 =а, ВВ 1 =b, А 1 В 1 =с и двугранный угол равен а (рис. 26). Решение. Проведем прямые A 1 C||BB 1 и ВС||А 1 В 1 . Четырехугольник А 1 В 1 ВС - параллелограмм, значит АА 1 ==ВВ 1 =b. Прямая А 1 В 1 перпендикулярна плоскости треугольника АA 1 C, так как она перпендикулярна двум прямым в этой плоскости АА 1 и СА 1 . Следовательно, параллельная ей прямая ВС тоже перпендикулярна этой плоскости. Значит, треугольник АВС - прямоугольный с прямым углом С. По теореме косинусов AC 2 =AA 1 2 +A 1 C 2 -2AA 1 A 1 C cos =a 2 +b 2 -2abcos . По теореме Пифагора АВ =AC 2 + ВС 2 = a 2 + b 2 - 2ab cos  + с 2 . Задача 2. У трехгранного угла (abc) двугранный угол при ребре с прямой, двугранный угол при ребре b равен , а плоский угол (bс) равен  (,  </2). Найдите два других плоских угла: =  (ab), = (ac). Решение. Опустим из произвольной точки А ребра а перпендикуляр АВ на ребро b и перпендикуляр АС на ребро с (рис. 27). По теореме о трех перпендикулярах СВ - перпендикуляр к ребру b. Из прямоугольных треугольников ОАВ, ОСВ, АОС и АВС получаем: tg  =AB/OB=(BC/ cos )/(BC/tg )= tg / cos  tg  =AC/OC=BC tg  / (BC/sin )= tg  sin  Задача 3 . В наклонной призме проведено сечение, перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l. Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 28). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.Задача 4. Боковое ребро пирамиды разделено на четыре равные части и через точки деления проведены плоскости, параллельные основанию. Площадь основания равна 400 см2. Найдите площади сечений. Решение. Сечения подобны основанию пирамиды с коэффициентами подобия ¼, 2/4, и ¾. Площади подобных фигур относятся как квадраты линейных размеров. Поэтому отношения площадей сечений к площади основания пирамиды есть (¼) 2 , (2/4) 2 , и (¾) 2 . Следовательно, площади сечений равны 400 (¼) 2 =25 (см 2), 400 (2/4) 2 =100 (см 2), 400 (¾) 2 =225 (см 2). Задача 5. Докажите, что боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему. Решение. Боковые грани усеченной пирамиды - трапеции с одним и тем же верхним основанием а, нижним b и высотой (апофемой) l. Поэтому площадь одной грани равна ½ (а + b)l. Площадь всех граней, т. е. боковая поверхность, равна ½ (аn + bn)l, где n - число вершин у основания пирамиды, an и bn - периметры оснований пирамиды.

IV. Заключение

Благодаря этой работе я обобщила и систематизировала знания, полученные за курс обучения в 11 классе, ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике. Хочу отметить 3 наиболее понравившиеся мне книги:. А.В. Погорелов «Геометрия», Г. Якушева «Математика - справочник школьника», Л.Ф. Пичурин «За страницами учебника геометрии». Эти книги помогли мне больше, чем другие. Мне бы хотелось чаще использовать свои новые полученные знания на практике.

V. Литература

1. А.В. Погорелов «Геометрия». – М.: Просвещение, 1992 2. Г. Якушева «Математика - справочник школьника». М.: Слово, 1995 3. Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981 4. Л.Ф. Пичурин «За страницами учебника геометрии». – М.: Просвещение, 1990 5. И.Н. Башмаков «Геометрия».

Понравилась статья? Поделитесь ей
Наверх