2 derivată a unei funcții complexe. Derivată a unei funcții complexe

Decide sarcini fizice sau exemple în matematică este complet imposibil fără cunoașterea derivatei și a metodelor de calcul al acesteia. Derivatul este unul dintre cele mai importante concepte analiză matematică. Am decis să dedicăm articolul de astăzi acestui subiect fundamental. Ce este un derivat, ce este fizic și sens geometric Cum se calculează derivata unei funcții? Toate aceste întrebări pot fi combinate într-una singură: cum să înțelegeți derivatul?

Sensul geometric și fizic al derivatului

Să existe o funcție f(x) , specificat într-un anumit interval (a, b) . Punctele x și x0 aparțin acestui interval. Când x se schimbă, funcția în sine se schimbă. Schimbarea argumentului - diferența de valori x-x0 . Această diferență este scrisă ca delta x și se numește increment de argument. O modificare sau o creștere a unei funcții este diferența dintre valorile unei funcții în două puncte. Definiția derivatului:

Derivata unei funcții într-un punct este limita raportului dintre incrementul funcției la un punct dat și incrementul argumentului atunci când acesta din urmă tinde spre zero.

Altfel se poate scrie asa:

Ce rost are să găsești o astfel de limită? Și iată ce este:

derivata unei funcții într-un punct este egală cu tangentei unghiului dintre axa OX și tangentei la graficul funcției într-un punct dat.


Sensul fizic derivat: derivata traseului în raport cu timpul este egală cu viteza mișcării rectilinie.

Într-adevăr, din vremea școlii toată lumea știe că viteza este o cale anume x=f(t) si timp t . Viteza medie pe o anumită perioadă de timp:

Pentru a afla viteza de mișcare la un moment dat t0 trebuie să calculați limita:

Prima regulă: setați o constantă

Constanta poate fi scoasă din semnul derivatului. Mai mult, acest lucru trebuie făcut. Când rezolvați exemple la matematică, luați-o ca regulă - Dacă puteți simplifica o expresie, asigurați-vă că o simplificați .

Exemplu. Să calculăm derivata:

Regula a doua: derivata sumei functiilor

Derivata sumei a doua functii este egala cu suma derivatelor acestor functii. Același lucru este valabil și pentru derivata diferenței de funcții.

Nu vom oferi o dovadă a acestei teoreme, ci mai degrabă luăm în considerare un exemplu practic.

Aflați derivata funcției:

Regula trei: derivata produsului de funcții

Derivata produsului a doua functii diferentiabile se calculeaza prin formula:

Exemplu: găsiți derivata unei funcții:

Soluţie:

Este important să vorbim aici despre calcularea derivatelor funcțiilor complexe. Derivata unei functii complexe este egala cu produsul derivatei acestei functii fata de argumentul intermediar si derivata argumentului intermediar fata de variabila independenta.

În exemplul de mai sus întâlnim expresia:

În acest caz, argumentul intermediar este de 8x față de a cincea putere. Pentru a calcula derivata unei astfel de expresii, mai întâi calculăm derivata funcției externe în raport cu argumentul intermediar și apoi înmulțim cu derivata argumentului intermediar în sine față de variabila independentă.

Regula a patra: derivată a câtului a două funcții

Formula pentru determinarea derivatei coeficientului a două funcții:

Am încercat să vorbim despre derivate pentru manechine de la zero. Acest subiect nu este atât de simplu pe cât pare, așa că fiți atenți: există adesea capcane în exemple, așa că aveți grijă când calculați derivatele.

Cu orice întrebări pe acest subiect și pe alte subiecte, puteți contacta serviciul studenți. În scurt timp, vă vom ajuta să rezolvați cel mai dificil test și să înțelegeți sarcinile, chiar dacă nu ați mai făcut niciodată calcule derivate.

În această lecție vom învăța cum să găsim derivata unei functii complexe. Lecția este o continuare logică a lecției Cum să găsesc derivatul?, în care am examinat cele mai simple derivate și, de asemenea, ne-am familiarizat cu regulile de diferențiere și unele tehnici tehnice de găsire a derivatelor. Astfel, dacă nu ești foarte bun cu derivatele de funcții sau unele puncte din acest articol nu sunt complet clare, atunci citește mai întâi lecția de mai sus. Vă rugăm să aveți o dispoziție serioasă - materialul nu este simplu, dar voi încerca totuși să îl prezint simplu și clar.

În practică, trebuie să te ocupi foarte des de derivata unei funcții complexe, chiar aș spune, aproape întotdeauna, atunci când ți se dau sarcini să găsești derivate.

Ne uităm la tabelul la regula (nr. 5) pentru diferențierea unei funcții complexe:

Să ne dăm seama. În primul rând, să fim atenți la intrare. Aici avem două funcții – și , iar funcția, la figurat vorbind, este imbricată în funcția . O funcție de acest tip (când o funcție este imbricată în alta) se numește funcție complexă.

Voi apela funcția functie externa, și funcția – funcție internă (sau imbricată)..

! Aceste definiții nu sunt teoretice și nu ar trebui să apară în proiectarea finală a sarcinilor. Folosesc expresii informale „funcție externă”, funcție „internă” doar pentru a vă facilita înțelegerea materialului.

Pentru a clarifica situația, luați în considerare:

Exemplul 1

Aflați derivata unei funcții

Sub sinus avem nu doar litera „X”, ci o expresie întreagă, așa că găsirea derivatei imediat din tabel nu va funcționa. De asemenea, observăm că este imposibil să se aplice primele patru reguli aici, pare să existe o diferență, dar adevărul este că sinusul nu poate fi „sfâșiat în bucăți”:

În acest exemplu, este deja intuitiv clar din explicațiile mele că funcția este o funcție complexă, iar polinomul este funcție internă(investiție) și – o funcție externă.

Primul pas ceea ce trebuie să faceți când găsiți derivata unei funcții complexe este să înțelegeți ce funcție este internă și care este externă.

În cazul în care exemple simple Pare clar că un polinom este încorporat sub sinus. Dar dacă totul nu este evident? Cum să determinați cu exactitate ce funcție este externă și care este internă? Pentru a face acest lucru, vă sugerez să utilizați următoarea tehnică, care poate fi făcută mental sau în formă de schiță.

Să ne imaginăm că trebuie să folosim un calculator pentru a calcula valoarea expresiei la (în loc de unul, poate exista orice număr).

Ce vom calcula mai întâi? În primul rând va trebui să efectuați următoarea acțiune: , prin urmare polinomul va fi o funcție internă:

În al doilea rând va trebui găsit, deci sine – va fi o funcție externă:

După noi SOLD OUT Cu funcții interne și externe, este timpul să aplici regula de diferențiere a funcțiilor complexe.

Să începem să decidem. Din clasa Cum să găsesc derivatul? ne amintim că proiectarea unei soluții la orice derivat începe întotdeauna astfel - încadrăm expresia între paranteze și punem o contur în dreapta sus:

La început găsim derivata funcției externe (sinus), ne uităm la tabelul derivatelor funcțiilor elementare și observăm că . Toate formulele de tabel sunt de asemenea aplicabile dacă „x” este înlocuit cu o expresie complexă, în acest caz:

Vă rugăm să rețineți că funcția interioară nu s-a schimbat, nu o atingem.

Ei bine, este destul de evident că

Rezultatul final al aplicării formulei arată astfel:

Factorul constant este de obicei plasat la începutul expresiei:

Dacă există vreo neînțelegere, notează soluția pe hârtie și citește din nou explicațiile.

Exemplul 2

Aflați derivata unei funcții

Exemplul 3

Aflați derivata unei funcții

Ca întotdeauna, notăm:

Să ne dăm seama unde avem o funcție externă și unde avem una internă. Pentru a face acest lucru, încercăm (mental sau într-o schiță) să calculăm valoarea expresiei la . Ce ar trebui să faci mai întâi? În primul rând, trebuie să calculați cu ce este egală baza: prin urmare, polinomul este funcția internă:

Și, numai atunci se realizează exponențiarea, prin urmare, funcția de putere este o funcție externă:

Conform formulei, mai întâi trebuie să găsiți derivata funcției externe, în acest caz, gradul. Căutăm formula necesară în tabel: . Repetăm ​​din nou: orice formulă tabelară este valabilă nu numai pentru „X”, ci și pentru o expresie complexă. Astfel, rezultatul aplicării regulii de diferențiere a unei funcții complexe este următorul:

Subliniez din nou că atunci când luăm derivata funcției externe, funcția noastră internă nu se schimbă:

Acum tot ce rămâne este să găsiți o derivată foarte simplă a funcției interne și să modificați puțin rezultatul:

Exemplul 4

Aflați derivata unei funcții

Acesta este un exemplu pentru decizie independentă(răspuns la sfârșitul lecției).

Pentru a vă consolida înțelegerea derivatei unei funcții complexe, voi da un exemplu fără comentarii, încercați să vă dați seama singur, motivul unde este funcția externă și unde este funcția internă, de ce sarcinile sunt rezolvate astfel?

Exemplul 5

a) Aflați derivata funcției

b) Aflați derivata funcției

Exemplul 6

Aflați derivata unei funcții

Aici avem o rădăcină, iar pentru a diferenția rădăcina, aceasta trebuie reprezentată ca o putere. Astfel, mai întâi aducem funcția în forma adecvată pentru diferențiere:

Analizând funcția, ajungem la concluzia că suma celor trei termeni este o funcție internă, iar ridicarea la putere este o funcție externă. Aplicam regula de diferentiere a functiilor complexe:

Reprezentăm din nou gradul ca un radical (rădăcină), iar pentru derivata funcției interne aplicăm o regulă simplă de diferențiere a sumei:

Gata. De asemenea, puteți reduce expresia la un numitor comun între paranteze și scrieți totul ca o fracție. Este frumos, desigur, dar atunci când obțineți derivate lungi greoaie, este mai bine să nu faceți acest lucru (este ușor să vă confundați, să faceți o greșeală inutilă și profesorul va fi incomod să verifice).

Exemplul 7

Aflați derivata unei funcții

Acesta este un exemplu pe care îl puteți rezolva singur (răspunsul la sfârșitul lecției).

Este interesant de observat că uneori, în loc de regula de diferențiere a unei funcții complexe, puteți folosi regula pentru diferențierea unui coeficient. , dar o astfel de soluție va arăta ca o perversiune amuzantă. Iată un exemplu tipic:

Exemplul 8

Aflați derivata unei funcții

Aici puteți folosi regula de diferențiere a coeficientului , dar este mult mai profitabil să găsim derivata prin regula de diferențiere a unei funcții complexe:

Pregătim funcția pentru diferențiere - mutăm minusul din semnul derivat și ridicăm cosinusul la numărător:

Cosinusul este o funcție internă, exponențiația este o funcție externă.
Să folosim regula noastră:

Găsim derivata funcției interne și resetăm cosinusul înapoi:

Gata. În exemplul luat în considerare, este important să nu vă confundați în semne. Apropo, încercați să o rezolvați folosind regula , răspunsurile trebuie să se potrivească.

Exemplul 9

Aflați derivata unei funcții

Acesta este un exemplu pe care îl puteți rezolva singur (răspunsul la sfârșitul lecției).

Până acum am analizat cazurile în care am avut un singur cuib într-o funcție complexă. În sarcinile practice, puteți găsi adesea derivate, în care, cum ar fi păpușile de cuibărit, una în cealaltă, 3 sau chiar 4-5 funcții sunt imbricate deodată.

Exemplul 10

Aflați derivata unei funcții

Să înțelegem atașamentele acestei funcții. Să încercăm să calculăm expresia folosind valoarea experimentală. Cum am conta pe un calculator?

Mai întâi trebuie să găsiți , ceea ce înseamnă că arcsinusul este cea mai adâncă încorporare:

Acest arcsinus al lui unu ar trebui apoi să fie pătrat:

Și, în sfârșit, ridicăm șapte la o putere:

Adică, în acest exemplu avem trei funcții diferite și două înglobări, în timp ce funcția cea mai interioară este arcsinus, iar funcția cea mai exterioară este funcția exponențială.

Să începem să decidem

Conform regulii, mai întâi trebuie să luați derivata funcției externe. Ne uităm la tabelul derivatelor și găsim derivata funcției exponențiale: Singura diferență este că în loc de „x” avem o expresie complexă, care nu anulează validitatea acestei formule. Deci, rezultatul aplicării regulii de diferențiere a unei funcții complexe este următorul:

Sub accident vascular cerebral avem din nou o funcție complexă! Dar deja este mai simplu. Este ușor de verificat că funcția interioară este arcsinus, funcția exterioară este gradul. Conform regulii de diferențiere a unei funcții complexe, mai întâi trebuie să luați derivata puterii.

Pe care am examinat cele mai simple derivate și, de asemenea, ne-am familiarizat cu regulile de diferențiere și unele tehnici tehnice de găsire a derivatelor. Astfel, dacă nu ești foarte bun cu derivatele de funcții sau unele puncte din acest articol nu sunt complet clare, atunci citește mai întâi lecția de mai sus. Vă rugăm să aveți o dispoziție serioasă - materialul nu este simplu, dar voi încerca totuși să îl prezint simplu și clar.

În practică, trebuie să te ocupi foarte des de derivata unei funcții complexe, chiar aș spune, aproape întotdeauna, atunci când ți se dau sarcini să găsești derivate.

Ne uităm la tabelul la regula (nr. 5) pentru diferențierea unei funcții complexe:

Să ne dăm seama. În primul rând, să fim atenți la intrare. Aici avem două funcții – și , iar funcția, la figurat vorbind, este imbricată în funcția . O funcție de acest tip (când o funcție este imbricată în alta) se numește funcție complexă.

Voi apela funcția functie externa, și funcția – funcție internă (sau imbricată)..

! Aceste definiții nu sunt teoretice și nu ar trebui să apară în proiectarea finală a sarcinilor. Folosesc expresii informale „funcție externă”, funcție „internă” doar pentru a vă facilita înțelegerea materialului.

Pentru a clarifica situația, luați în considerare:

Exemplul 1

Aflați derivata unei funcții

Sub sinus avem nu doar litera „X”, ci o expresie întreagă, așa că găsirea derivatei imediat din tabel nu va funcționa. De asemenea, observăm că este imposibil să se aplice primele patru reguli aici, pare să existe o diferență, dar adevărul este că sinusul nu poate fi „sfâșiat în bucăți”:

În acest exemplu, este deja intuitiv clar din explicațiile mele că o funcție este o funcție complexă, iar polinomul este o funcție internă (încorporare) și o funcție externă.

Primul pas ceea ce trebuie să faceți când găsiți derivata unei funcții complexe este să înțelegeți ce funcție este internă și care este externă.

În cazul exemplelor simple, pare clar că un polinom este încorporat sub sinus. Dar dacă totul nu este evident? Cum să determinați cu exactitate ce funcție este externă și care este internă? Pentru a face acest lucru, vă sugerez să utilizați următoarea tehnică, care poate fi făcută mental sau în schiță.

Să ne imaginăm că trebuie să folosim un calculator pentru a calcula valoarea expresiei la (în loc de unul, poate exista orice număr).

Ce vom calcula mai întâi? În primul rând va trebui să efectuați următoarea acțiune: , prin urmare polinomul va fi o funcție internă:

În al doilea rând va trebui găsit, deci sine – va fi o funcție externă:

După noi SOLD OUT cu funcții interne și externe, este timpul să aplici regula de diferențiere a funcțiilor complexe .

Să începem să decidem. De la lecție Cum să găsesc derivatul? ne amintim că proiectarea unei soluții la orice derivat începe întotdeauna astfel - încadrăm expresia între paranteze și punem o contur în dreapta sus:

La început găsim derivata funcției externe (sinus), ne uităm la tabelul derivatelor funcțiilor elementare și observăm că . Toate formulele de tabel sunt de asemenea aplicabile dacă „x” este înlocuit cu o expresie complexă, în acest caz:

Vă rugăm să rețineți că funcția interioară nu s-a schimbat, nu o atingem.

Ei bine, este destul de evident că

Rezultatul aplicării formulei în forma sa finală arată astfel:

Factorul constant este de obicei plasat la începutul expresiei:

Dacă există vreo neînțelegere, notează soluția pe hârtie și citește din nou explicațiile.

Exemplul 2

Aflați derivata unei funcții

Exemplul 3

Aflați derivata unei funcții

Ca întotdeauna, notăm:

Să ne dăm seama unde avem o funcție externă și unde avem una internă. Pentru a face acest lucru, încercăm (mental sau într-o schiță) să calculăm valoarea expresiei la . Ce ar trebui să faci mai întâi? În primul rând, trebuie să calculați cu ce este egală baza: prin urmare, polinomul este funcția internă:

Și, numai atunci se realizează exponențiarea, prin urmare, funcția de putere este o funcție externă:

Conform formulei , mai întâi trebuie să găsiți derivata funcției externe, în acest caz, gradul. Căutăm formula necesară în tabel: . Repetăm ​​din nou: orice formulă tabelară este valabilă nu numai pentru „X”, ci și pentru o expresie complexă. Astfel, rezultatul aplicării regulii de diferențiere a unei funcții complexe Următorul:

Subliniez din nou că atunci când luăm derivata funcției externe, funcția noastră internă nu se schimbă:

Acum tot ce rămâne este să găsiți o derivată foarte simplă a funcției interne și să modificați puțin rezultatul:

Exemplul 4

Aflați derivata unei funcții

Acesta este un exemplu pe care îl puteți rezolva singur (răspunsul la sfârșitul lecției).

Pentru a vă consolida înțelegerea derivatei unei funcții complexe, voi da un exemplu fără comentarii, încercați să vă dați seama singur, motivul unde este funcția externă și unde este funcția internă, de ce sarcinile sunt rezolvate astfel?

Exemplul 5

a) Aflați derivata funcției

b) Aflați derivata funcției

Exemplul 6

Aflați derivata unei funcții

Aici avem o rădăcină, iar pentru a diferenția rădăcina, aceasta trebuie reprezentată ca o putere. Astfel, mai întâi aducem funcția în forma adecvată pentru diferențiere:

Analizând funcția, ajungem la concluzia că suma celor trei termeni este o funcție internă, iar ridicarea la putere este o funcție externă. Aplicam regula de diferentiere a functiilor complexe :

Reprezentăm din nou gradul ca un radical (rădăcină), iar pentru derivata funcției interne aplicăm o regulă simplă de diferențiere a sumei:

Gata. De asemenea, puteți reduce expresia la un numitor comun între paranteze și scrieți totul ca o fracție. Este frumos, desigur, dar atunci când obțineți derivate lungi greoaie, este mai bine să nu faceți acest lucru (este ușor să vă confundați, să faceți o greșeală inutilă și profesorul va fi incomod să verifice).

Exemplul 7

Aflați derivata unei funcții

Acesta este un exemplu pe care îl puteți rezolva singur (răspunsul la sfârșitul lecției).

Este interesant de observat că uneori, în loc de regula de diferențiere a unei funcții complexe, puteți folosi regula pentru diferențierea unui coeficient. , dar o astfel de soluție va arăta ca o perversiune neobișnuită. Iată un exemplu tipic:

Exemplul 8

Aflați derivata unei funcții

Aici puteți folosi regula de diferențiere a coeficientului , dar este mult mai profitabil să găsim derivata prin regula de diferențiere a unei funcții complexe:

Pregătim funcția pentru diferențiere - mutăm minusul din semnul derivat și ridicăm cosinusul la numărător:

Cosinusul este o funcție internă, exponențiația este o funcție externă.
Să folosim regula noastră :

Găsim derivata funcției interne și resetăm cosinusul înapoi:

Gata. În exemplul luat în considerare, este important să nu vă confundați în semne. Apropo, încercați să o rezolvați folosind regula , răspunsurile trebuie să se potrivească.

Exemplul 9

Aflați derivata unei funcții

Acesta este un exemplu pe care îl puteți rezolva singur (răspunsul la sfârșitul lecției).

Până acum am analizat cazurile în care am avut un singur cuib într-o funcție complexă. În sarcinile practice, puteți găsi adesea derivate, în care, cum ar fi păpușile de cuibărit, una în cealaltă, 3 sau chiar 4-5 funcții sunt imbricate deodată.

Exemplul 10

Aflați derivata unei funcții

Să înțelegem atașamentele acestei funcții. Să încercăm să calculăm expresia folosind valoarea experimentală. Cum am conta pe un calculator?

Mai întâi trebuie să găsiți , ceea ce înseamnă că arcsinusul este cea mai adâncă încorporare:

Acest arcsinus al lui unu ar trebui apoi să fie pătrat:

Și, în sfârșit, ridicăm șapte la o putere:

Adică, în acest exemplu avem trei funcții diferite și două înglobări, în timp ce funcția cea mai interioară este arcsinus, iar funcția cea mai exterioară este funcția exponențială.

Să începem să decidem

Conform regulii Mai întâi trebuie să luați derivata funcției exterioare. Ne uităm la tabelul derivatelor și găsim derivata funcției exponențiale: Singura diferență este că în loc de „x” avem o expresie complexă, care nu anulează validitatea acestei formule. Deci, rezultatul aplicării regulii de diferențiere a unei funcții complexe Următorul.

Dacă g(x) Și f(u) – funcții diferențiabile ale argumentelor lor, respectiv, la puncte xŞi u= g(x), atunci funcția complexă este și diferențiabilă la punct x si se gaseste prin formula

O greșeală tipică la rezolvarea problemelor derivate este transferul mecanic al regulilor de diferențiere a funcțiilor simple la funcții complexe. Să învățăm să evităm această greșeală.

Exemplul 2. Aflați derivata unei funcții

Solutie gresita: calculați logaritmul natural al fiecărui termen din paranteze și căutați suma derivatelor:

Solutia corecta: iar noi determinăm unde este „mărul” și unde este „carnea tocată”. Aici logaritmul natural al expresiei din paranteze este un „măr”, adică o funcție peste argumentul intermediar u, iar expresia dintre paranteze este „carne tocată”, adică un argument intermediar u prin variabila independenta x.

Apoi (folosind formula 14 din tabelul derivatelor)

În multe probleme din viața reală, expresia cu un logaritm poate fi ceva mai complicată, motiv pentru care există o lecție

Exemplul 3. Aflați derivata unei funcții

Solutie gresita:

Decizia corectă.Încă o dată stabilim unde este „mărul” și unde este „carnea tocată”. Aici, cosinusul expresiei dintre paranteze (formula 7 din tabelul derivatelor) este un „măr”, este pregătit în modul 1, care îl afectează numai pe acesta, iar expresia dintre paranteze (derivata gradului este numărul 3 în tabelul derivatelor) este „carne tocată”, se prepară în modul 2, care o afectează numai pe aceasta. Și, ca întotdeauna, conectăm două derivate cu semnul produsului. Rezultat:

Derivata unei funcții logaritmice complexe este o sarcină frecventă în teste, așa că vă recomandăm insistent să participați la lecția „Derivată a unei funcții logaritmice”.

Primele exemple au fost pe funcții complexe, în care argumentul intermediar asupra variabilei independente era o funcție simplă. Dar în sarcinile practice este adesea necesar să se găsească derivata unei funcții complexe, unde argumentul intermediar este fie el însuși o funcție complexă, fie conține o astfel de funcție. Ce să faci în astfel de cazuri? Găsiți derivate ale unor astfel de funcții folosind tabele și reguli de diferențiere. Când se găsește derivata argumentului intermediar, aceasta este pur și simplu substituită în locul potrivit în formulă. Mai jos sunt două exemple despre cum se face acest lucru.

În plus, este util să știți următoarele. Dacă o funcţie complexă poate fi reprezentată ca un lanţ de trei funcţii

atunci derivata sa ar trebui găsită ca produsul derivatelor fiecăreia dintre aceste funcții:

Multe dintre temele dvs. pot necesita să vă deschideți ghidurile în ferestre noi. Acțiuni cu puteri și rădăciniŞi Operații cu fracții .

Exemplul 4. Aflați derivata unei funcții

Aplicam regula de diferentiere a unei functii complexe, fara a uita ca in produsul rezultat al derivatelor exista un argument intermediar fata de variabila independenta x nu se schimba:

Pregătim al doilea factor al produsului și aplicăm regula de diferențiere a sumei:

Al doilea termen este rădăcina, deci

Astfel, am constatat că argumentul intermediar, care este o sumă, conține o funcție complexă ca unul dintre termeni: ridicarea la o putere este o funcție complexă, iar ceea ce este ridicat la o putere este un argument intermediar față de independenta. variabilă x.

Prin urmare, aplicăm din nou regula de diferențiere a unei funcții complexe:

Transformăm gradul primului factor într-o rădăcină, iar la diferențierea celui de-al doilea factor, nu uităm că derivata constantei este egală cu zero:

Acum putem găsi derivata argumentului intermediar necesar pentru a calcula derivata unei funcții complexe cerute în enunțul problemei y:

Exemplul 5. Aflați derivata unei funcții

În primul rând, folosim regula pentru diferențierea sumei:

Am obținut suma derivatelor a două funcții complexe. Să-l găsim pe primul:

Aici, ridicarea sinusului la o putere este o funcție complexă, iar sinusul însuși este un argument intermediar pentru variabila independentă x. Prin urmare, vom folosi regula de diferențiere a unei funcții complexe, pe parcurs scotând factorul din paranteze :

Acum găsim al doilea termen al derivatelor funcției y:

Aici ridicarea cosinusului la o putere este o funcție complexă f, iar cosinusul însuși este un argument intermediar în variabila independentă x. Să folosim din nou regula pentru diferențierea unei funcții complexe:

Rezultatul este derivata necesară:

Tabel de derivate ale unor funcții complexe

Pentru funcțiile complexe, bazate pe regula de diferențiere a unei funcții complexe, formula pentru derivata unei funcții simple ia o formă diferită.

1. Derivat al unui complex functie de putere, Unde u x
2. Derivat al rădăcinii expresiei
3. Derivata unei functii exponentiale
4. Caz special al funcției exponențiale
5. Derivată a unei funcții logaritmice cu o bază pozitivă arbitrară O
6. Derivata unei functii logaritmice complexe, unde u– funcția diferențiabilă a argumentului x
7. Derivată de sinus
8. Derivată a cosinusului
9. Derivată a tangentei
10. Derivat de cotangente
11. Derivată de arcsinus
12. Derivată a arccosinusului
13. Derivată a arctangentei
14. Derivată a cotangentei arcului


Ți-a plăcut articolul? Împărtășește-l
Top