Поверхностное упрочнение стали. Способ упрочнения поверхности металла (варианты) и суспензия для упрочнения металлической поверхности Упрочнение деталей способы и технологии

Термомеханическая обработка стали. Одним из технологических процессов упрочняющей обработки является термомеханическая обработка (ТМО). Термомеханическая обработка относится к комбинированным способам изменения строения и свойств материалов. При термомеханической обработке совмещаются пластическая деформация и термическая обработка (закалка предварительно деформированной стали в аустенитном состоянии). Преимуществом термомеханической обработки является то, что при существенном увеличении прочности характеристики пластичности снижаются незначительно, а ударная вязкость выше в 1,5…2 раза по сравнению с ударной вязкостью для той же стали после закалки с низким отпуском. В зависимости от температуры, при которой проводят деформацию, различают высокотемпературную термомеханическую обработку (ВТМО) и низкотемпературную термомеханическую обработку (НТМО). Сущность высокотемпературной термомеханической обработки заключается в нагреве стали до температуры аустенитного состояния (выше А 3). При этой температуре осуществляют деформацию стали, что ведет к наклепу аустенита. Сталь с таким состоянием аустенита подвергают закалке (рис. 16.1 а). Высокотемпературная термомеханическая обработка практически устраняет развитие отпускной хрупкости в опасном интервале температур, ослабляет необратимую отпускную хрупкость и резко повышает ударную вязкость при комнатной температуре. Понижается температурный порог хладоломкости. Высокотемпературная термомеханическая обработка повышает сопротивление хрупкому разрушению, уменьшает чувствительность к трещинообразованию при термической обработке. Рис. 16.1. Схема режимов термомеханической обработки стали: а – высокотемпературная термомеханическая обработка (ВТМО); б – низкотемпературная термомеханическая обработка (НТМО). Высокотемпературную термомеханическую обработку эффективно использовать для углеродистых, легированных, конструкционных, пружинных и инструментальных сталей. Последующий отпуск при температуре 100…200 o С проводится для сохранения высоких значений прочности. Низкотемпературная термомеханическая обработка (аусформинг). Сталь нагревают до аустенитного состояния. Затем выдерживают при высокой температуре, производят охлаждение до температуры, выше температуры начала мартенситного превращения (400…600 o С), но ниже температуры рекристаллизации, и при этой температуре осуществляют обработку давлением и закалку (рис. 16.1 б). Низкотемпературная термомеханическая обработка, хотя и дает более высокое упрочнение, но не снижает склонности стали к отпускной хрупкости. Кроме того, она требует высоких степеней деформации (75…95 %), поэтому требуется мощное оборудование. Низкотемпературную термомеханическую обработку применяют к среднеуглеродистым легированным сталям, закаливаемым на мартенсит, которые имеют вторичную стабильность аустенита. Повышение прочности при термомеханической обработке объясняют тем, что в результате деформации аустенита происходит дробление его зерен (блоков). Размеры блоков уменьшаются в два – четыре раза по сравнению с обычной закалкой. Также увеличивается плотность дислокаций. При последующей закалке такого аустенита образуются более мелкие пластинки мартенсита, снижаются напряжения. Механические свойства после разных видов ТМО для машиностроительных сталей в среднем имеют следующие характеристики (см. табл. 16.1): Таблица 16.1. Механические свойства сталей после ТМО

Термомеханическую обработку применяют и для других сплавов.

Поверхностное упрочнение стальных деталей.

Конструкционная прочность часто зависит от состояния материала в поверхностных слоях детали. Одним из способов поверхностного упрочнения стальных деталей является поверхностная закалка.

В результате поверхностной закалки увеличивается твердость поверхностных слоев изделия с одновременным повышением сопротивления истиранию и предела выносливости.

Общим для всех видов поверхностной закалки является нагрев поверхностного слоя детали до температуры закалки с последующим быстрым охлаждением. Эти способы различаются методами нагрева деталей. Толщина закаленного слоя при поверхностной закалке определяется глубиной нагрева.

Наибольшее распространение имеют электротермическая закалка с нагревом изделий токами высокой частоты (ТВЧ) и газопламенная закалка с нагревом газово-кислородным или кислородно-керосиновым пламенем.

Закалка токами высокой частоты.

Метод разработан советским ученым Вологдиным В.П.

Основан на том, что если в переменное магнитное поле, создаваемое проводником-индуктором, поместить металлическую деталь, то в ней будут индуцироваться вихревые токи, вызывающие нагрев металла. Чем больше частота тока, тем тоньше получается закаленный слой.

Обычно используются машинные генераторы с частотой 50…15000 Гц и ламповые генераторы с частотой больше 10 6 Гц. Глубина закаленного слоя – до 2 мм.

Индукторы изготавливаются из медных трубок, внутри которых циркулирует вода, благодаря чему они не нагреваются. Форма индуктора соответствует внешней форме изделия, при этом необходимо постоянство зазора между индуктором и поверхностью изделия.

Схема технологического процесса закалки ТВЧ представлена на рис. 16.2.

Рис. 16.2. Схема технологического процесса закалки ТВЧ

После нагрева в течение 3…5 с индуктора 2 деталь 1 быстро перемещается в специальное охлаждающее устройство – спрейер 3, через отверстия которого на нагретую поверхность разбрызгивается закалочная жидкость.

Высокая скорость нагрева смещает фазовые превращения в область более высоких температур. Температура закалки при нагреве токами высокой частоты должна быть выше, чем при обычном нагреве.

При правильных режимах нагрева после охлаждения получается структура мелкоигольчатого мартенсита. Твердость повышается на 2…4 HRC по сравнению с обычной закалкой, возрастает износостойкость и предел выносливости.

Перед закалкой ТВЧ изделие подвергают нормализации, а после закалки низкому отпуску при температуре 150…200 o С (самоотпуск).

Наиболее целесообразно использовать этот метод для изделий из сталей с содержанием углерода более 0,4 %.

Преимущества метода:

  • большая экономичность, нет необходимости нагревать все изделие;
  • более высокие механические свойства;
  • отсутствие обезуглероживания и окисления поверхности детали;
  • снижение брака по короблению и образованию закалочных трещин;
  • возможность автоматизации процесса;
  • использование закалки ТВЧ позволяет заменить легированные стали на более дешевые углеродистые;
  • позволяет проводить закалку отдельных участков детали.

Основной недостаток метода – высокая стоимость индукционных установок и индукторов.

Целесообразно использовать в серийном и массовом производстве.

Газопламенная закалка.

Нагрев осуществляется ацетиленокислородным, газокислородным или керосинокислородным пламенем с температурой 3000…3200 o С.

Структура поверхностного слоя после закалки состоит из мартенсита, мартенсита и феррита. Толщина закаленного слоя 2…4 мм, твердость 50…56 HRC.

Метод применяется для закалки крупных изделий, имеющих сложную поверхность (косозубые шестерни, червяки), для закалки стальных и чугунных прокатных валков. Используется в массовом и индивидуальном производстве, а также при ремонтных работах.

При нагреве крупных изделий горелки и охлаждающие устройства перемещаются вдоль изделия, или – наоборот.

Недостатки метода:

  • невысокая производительность;
  • сложность регулирования глубины закаленного слоя и температуры нагрева (возможность перегрева).

Старение.

Отпуск применяется к сплавам, которые подвергнуты закалке с полиморфным превращением.

К материалам, подвергнутым закалке без полиморфного превращения, применяется старение.

Закалка без полиморфного превращения – термическая обработка, фиксирующая при более низкой температуре состояние, свойственное сплаву при более высоких температурах (пересыщенный твердый раствор).

Старение – термическая обработка, при которой главным процессом является распад пересыщенного твердого раствора.

В результате старения происходит изменение свойств закаленных сплавов.

В отличие от отпуска, после старения увеличиваются прочность и твердость, и уменьшается пластичность.

Старение сплавов связано с переменной растворимостью избыточной фазы, а упрочнение при старении происходит в результате дисперсионных выделений при распаде пересыщенного твердого раствора и возникающих при этом внутренних напряжений.

В стареющих сплавах выделения из твердых растворов встречаются в следующих основных формах:

  • тонкопластинчатой (дискообразной);
  • равноосной (сферической или кубической);
  • игольчатой.

Форма выделений определяется конкурирующими факторами: поверхностной энергией и энергией упругой деформации, стремящимися к минимуму.

Поверхностная энергия минимальна для равноосных выделений. Энергия упругих искажений минимальна для выделений в виде тонких пластин.

Основное назначение старения – повышение прочности и стабилизация свойств.

Различают старение естественное, искусственное и после пластической деформации.

Естественным старением называется самопроизвольное повышение прочности и уменьшение пластичности закаленного сплава, происходящее в процессе его выдержки при нормальной температуре.

Нагрев сплава увеличивает подвижность атомов, что ускоряет процесс.

Повышение прочности в процессе выдержки при повышенных температурах называется искусственным старением.

Предел прочности, предел текучести и твердость сплава с увеличением продолжительности старения возрастают, достигают максимума и затем снижаются (явление перестаривания)

При естественном старении перестаривания не происходит. С повышением температуры стадия перестаривания достигается раньше.

Если закаленный сплав, имеющий структуру пересыщенного твердого раствора, подвергнуть пластической деформации, то также ускоряются процессы, протекающие при старении – это деформационное старение.

Старение охватывает все процессы, происходящие в пересыщенном твердом растворе: процессы, подготавливающие выделение, и сами процессы выделения.

Для практики большое значение имеет инкубационный период – время, в течение которого в закаленном сплаве совершаются подготовительные процессы, когда сохраняется высокая пластичность. Это позволяет проводить холодную деформацию после закалки.

Если при старении происходят только процессы выделения, то явление называется дисперсионным твердением.

После старения повышается прочность и снижается пластичность низкоуглеродистых сталей в результате дисперсных выделений в феррите цементита третичного и нитридов.

Старение является основным способом упрочнения алюминиевых и медных сплавов, а также многих жаропрочных сплавов.

Обработка стали холодом.

Высокоуглеродистые и многие легированные стали имеют температуру конца мартенситного превращения (М к) ниже 0 o С. Поэтому в структуре стали после закалки наблюдается значительное количество остаточного аустенита, который снижает твердость изделия, а также ухудшает магнитные характеристики. Для устранения аустенита остаточного проводят дополнительное охлаждение детали в области отрицательных температур, до температуры ниже т. М к (- 80 o С). Обычно для этого используют сухой лед.

Такая обработка называется обработкой стали холодом.

Обработку холодом необходимо проводить сразу после закалки, чтобы не допустить стабилизации аустенита. Увеличение твердости после обработки холодом обычно составляет 1…4 HRC.

После обработки холодом сталь подвергают низкому отпуску, так как обработка холодом не снижает внутренних напряжений.

Обработке холодом подвергают детали шарикоподшипников, точных механизмов, измерительные инструменты.

Упрочнение методом пластической деформации.

Основное назначение методов механического упрочнения поверхности – повышение усталостной прочности.

Методы механического упрочнения – наклепывание поверхностного слоя на глубину 0,2…0,4 мм.

Разновидностями являются дробеструйная обработка и обработка роликами.

Дробеструйная обработка – обработка дробью поверхности готовых деталей.

Осуществляется с помощью специальных дробеструйных установок, выбрасывающих стальную или чугунную дробь на поверхность обрабатываемых деталей. Диаметр дроби – 0,2…4 мм. Удары дроби вызывают пластическую деформацию на глубину 0,2…0,4 мм.

Применяют для упрочнения деталей в канавках, на выступах. Подвергают изделия типа пружин, рессор, звенья цепей, гусениц, гильзы, поршни, зубчатые колеса.

При обработке роликами деформация осуществляется давлением ролика из твердого металла на поверхность обрабатываемого изделия.

При усилиях на ролик, превышающих предел текучести обрабатываемого материала, происходит наклеп на нужную глубину. Обработка улучшает микрогеометрию. Создание остаточных напряжений сжатия повышает предел усталости и долговечность изделия.

Обкатка роликами применяется при обработке шеек валов, проволоки, при калибровке труб, прутков.

Не требуется специальное оборудование, можно использовать токарные или строгальные станки.

Дата публикования: 2015-03-26 ; Прочитано: 1735 | Нарушение авторского права страницы | Заказать написание работы

сайт - Студопедия.Орг - 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с) ...

Отключите adBlock!
очень нужно

Введение

1. Механические методы поверхностного упрочнения деталей машин

1.1 Параметры состояния поверхностного слоя деталей машин

1.2 Структурные несовершенства в реальных кристаллах

2. Современные методы упрочнения металлов

2.1 Упрочнение легированием

2.2 Упрочнение пластическим деформированием

2.3 Упрочнение термическими методами

2.4 Поверхностное упрочнение

2.5 Плазменное поверхностное упрочнение деталей

2.6 Вакуумное ионно-плазменное упрочнение, ионное магнетронное распыление, ионное легирование

Заключение

Список литературы

Введение

Одним из важнейших показателей, определяющих спрос на проектируемый объект, является его качество. Обеспечение необходимого качества возможно при удовлетворении эксплуатационных требований, предъявляемых к деталям машин. Работоспособность и надежность детали обеспечиваются за счет выполнения следующих основных требований: прочности, жесткости и стойкости к различным воздействиям (износу, вибрации, температуре и др.). Выполнение требований прочности при статическом, циклическом и ударном нагружениях должно исключить возможность разрушения, а также возникновения недопустимых остаточных деформаций. Требования жесткости к детали или контактной поверхности сводятся к ограничению возникающих под действием нагрузок деформаций, нарушающих работоспособность изделия, к недоступности потери общей устойчивости для длинных деталей, подвергающихся сжатию, и местной - у тонких элементов. Должна быть обеспечена износостойкость детали, которая существенно влияет на долговечность работы механизма. Достаточно, чтобы для каждой детали выполнялись не все перечисленные выше требования, а лишь те, которые связаны с ее эксплуатацией.

1. Механические методы поверхностного упрочнения деталей машин

Требования по созданию долговечных машин можно удовлетворить не только разработкой современных конструкционных решений и применением новых высокопрочных материалов, но и путем изменений поверхностного слоя деталей машин. Процессом, обеспечивающим получение стабильных показателей по качеству поверхности, является поверхностное пластическое деформирование, которое подразделяется на сглаживающее и упрочняющее..

1 Параметры состояния поверхностного слоя деталей машин

Поверхностный слой детали - это слой, у которого структура, фазовый и химический состав отличаются от основного материала, из которого сделана деталь.

Рисунок 1. Схема поверхностного слоя детали

В поверхностном слое можно выделить следующие основные зоны (рис.1):

Адсорбированных из окружающей среды молекул и атомов органических и неорганических веществ. Толщина слоя 1 0,001 мкм;

Продуктов химического взаимодействия металла с окружающей средой (обычно оксидов). Толщина слоя 10 1 мкм;

Граничная толщиной несколько межатомных расстояний, имеющая иную, чем в объеме, кристаллическую и электронную структуру;

С измененными параметрами по сравнению с основным металлом;

Со структурой, фазовым и химическим составом, который возникает при изготовлении детали и изменяется в процессе эксплуатации. Толщина и состояние указанных слоев поверхностного слоя могут изменяться в зависимости от состава материала, метода обработки, условий эксплуатации. Оценка этого состояния осуществляется методами химического, физического и механического анализа. Многообразие параметров состояния поверхностного слоя и методов их оценки не позволяет выделить единственный параметр, определяющий качество поверхностного слоя. На практике состояние поверхностного слоя оценивается набором единичных или комплексных свойств, которые оценивают качество поверхностного слоя..

Эти параметры характеризуют:

Геометрические параметры неровностей поверхности;

Физическое состояние;

Химический состав;

Механическое состояние.

Геометрические параметры неровностей поверхности оцениваются параметрами шероховатости, регулярных микрорельефов, волнистости. Шероховатость поверхности - это совокупность неровностей с относительно малыми шагами. Примерное отношение высоты неровностей к шагу менее 50. Волнистость поверхности - это совокупность неровностей, имеющих шаг больший, чем базовая длина, используемая для измерения шероховатости. Отношение высоты к шагу более 50 и менее 1000. Волнистость в России не стандартизирована, поэтому для ее оценки используют параметры шероховатости. Регулярные микрорельефы - это неровности, которые, в отличие от шероховатости и волнистости, одинаковы по форме, размерам и взаиморасположению. Регулярный микрорельеф получают обработкой резанием или поверхностным пластическим деформированием роликами, шариками, алмазами. Физическое состояние поверхностного слоя деталей в технологии упрочнения наиболее часто характеризуется параметрами структуры и фазового состава. Структура - это характеристика металла, зависящая от методов изучения его строения.

Выделяют следующие типы структур:

Кристаллическая;

Субструктура;

Микроструктура;

Макроструктура.

Кристаллическая структура. Металлы представляют собой кристаллы с трехмерной периодичностью. Основой кристаллической структуры является трехмерная решетка, в пространстве которой располагаются атомы. В зависимости от характера расположения атомов в кристаллической решетке структуры чистых металлов разделяются на ряд типов. В реальном металле кристаллическая структура имеет множество дефектов, которые в значительной степени определяют его свойства. Совокупность дефектов решетки и их пространственное распределение в кристалле называется субструктурой. Здесь кристаллы могут 5образовывать более крупные фрагменты - кристаллиты, блоки, зерна, фрагменты, полигоны. Размер субмикрозерна: 10-2÷10-5см.

Микроструктура - это структура, определяемая с помощью металлографических микроскопов. Этот анализ позволяет определить наличие, количество и форму структурных составляющих сплава. Размер субзерна: 10-3÷10-4 см..

Макроструктура - это структура, которая определяется невооруженным глазом или при небольших увеличениях. С помощью макроанализа определяют трещины, неметаллические включения, примеси и др. Физическое состояние характеризуется числом и концентрацией фаз, распределением фаз по поверхностному слою, объемом сплава и др. Исследование физического состояния осуществляется экспериментальными методами физики твердого тела: дифракционными и микроскопическими. Химический состав характеризуется элементным составом сплава и фаз, концентрацией элементов в объеме фаз, сплава и др. Исследования химического состава поверхностного слоя позволяют оценить адсорбцию из окружающей среды молекул и атомов органических и неорганических веществ, диффузионные процессы, процессы окисления и другие, происходящие при обработке металлов.

Рисунок 2. Типы кристаллической структуры: а - объемно-центрированная кубическая; б - гранецентрированная кубическая; в - гексагонально-плотноупакованная

Механическое состояние металла определяется параметрами: - сопротивлением деформированию:

предел упругости, предел пропорциональности, предел текучести, предел прочности, твердость и др.;

пластичностью: относительное удлинение, относительное сужение, ударная вязкость и другие, устанавливаемые специальными испытаниями образцов. .

Например, в процессе пластической деформации, которая всегда сопровождает механическую обработку, все характеристики механического состояния поверхностного слоя изменяются: показатели сопротивления деформированию увеличиваются, а показатели пластичности уменьшаются.

Это явление называют деформационным упрочнением.

В инженерной практике деформационное упрочнение поверхностного слоя определяют измерением твердости Н или микротвердости. Для этого твердость измеряют на поверхности металла и внутри металла (при помощи послойного травления). В результате устанавливают толщину упрочненного слоя hH и степень деформационного упрочнения δн: δн=(Нобр-Ниск)/ Ниск, где Нобр и Ниск - соответственно твердость (микротвердость) металла после и до обработки. Важной характеристикой состояния поверхностного слоя являются остаточные напряжения. Остаточные напряжения - это упругие напряжения, которые остались в детали после обработки..

В зависимости от объема тела, в которых рассчитывают остаточные напряжения, они условно подразделяются на остаточные напряжения:

первого рода, уравновешенные в макрообъемах тела;

второго рода, уравновешенные в пределах размера зерен;

третьего рода, уравновешенные в пределах нескольких межатомных расстояний.

В зависимости от характера и интенсивности физико-механических процессов, происходящих при обработке, остаточные напряжения могут иметь различный знак:

(+) - растягивание;

(-) - сжимание.

Условие равновесия требует, чтобы в объеме детали сумма проекций всех сил была равна нулю. Поэтому в детали есть область со сжимающими и растягивающими остаточными напряжениями.

В инженерной практике остаточные напряжения первого рода принято представлять в виде проекции на оси заданной системы координат. Например, для тела вращения используют понятия осевых σо х, окружных (тангенциальных) σо т и радиальных σо r остаточных напряжений. Обобщенно можно сказать, что остаточные напряжения первого рода есть результат неравномерных пластических деформаций различных слоев детали (искривление детали). Остаточные напряжения оказывают существенное влияние на прочность и долговечность деталей машин и конструкций.

Остаточные сжимающие напряжения, возникающие в поверхностном слое, повышают циклическую прочность деталей, т.к. они разгружают поверхностные слои от напряжений, вызванных нагрузками и, наоборот, растягивающие остаточные напряжения уменьшают прочность деталей вследствие повышения напряженности поверхностного слоя..

1.2 Структурные несовершенства в реальных кристаллах

В соответствии с современными взглядами на строение металла, существенное различие теоретической и физической прочности объясняется наличием структурных несовершенств (дефектов) кристаллов. Структурные дефекты оказывают существенное влияние на упрочнение и разрушение металла при обработке. Структурные несовершенства в кристаллах возникают в результате кристаллизации металла, термической обработки, пластической деформации и др.

Структурные несовершенства (дефекты) кристалла по геометрическому признаку подразделяются на 4 группы:

Точечные;

Линейные;

Поверхностные (плоские);

Объемные.

Точечные дефекты по своим размерам сопоставимы с размерами атома. В чистых кристаллах возможны два типа точечных дефектов (рисунок 3):

Вакансии;

Межузельные атомы.

Вакансии образуются при удалении атома из узла решетки, а межузельный атом при введении атома в межузельное пространство. Образование вакансий и межузельных атомов связано с тем, что колеблющиеся около положения равновесия атомы могут под влиянием привнесенной извне энергии выходить из положения равновесия, образуя после себя в узле кристаллической решетки пустоту (вакансию) и, соответственно, межузельный атом..

Рисунок 3.Точечные дефекты в плоскости простой кубической решетки: А - дислоцированный атом; В - вакансии

Рисунок 4.Точечные дефекты в плоскости простой кубической решетки: ө - примесные атомы внедрения; ● - атомы замещения

Все точечные дефекты образуют локальные искажения кристаллической решетки, повышая тем самым энергию, зависящую от размера введенных атомов и расстояние между ними. Линейные дефекты кристаллической решетки имеют размеры, близкие к атомным в двух измерениях и значительную протяженность в третьем.

упрочнение металл легирование закалка

2. Современные методы упрочнения металлов

.1 Упрочнение легированием

Формирование благоприятной структуры и надежность работы деталей обеспечивает рациональное легирование, измельчение зерна и повышение качества металла. Упрочнение при легировании увеличивается пропорционально концентрации легирующего элемента в твердом растворе. При этом надо помнить, что различные легирующие элементы имеют ограниченную растворимость в основных фазах сплава и это зависит от относительной разницы атомных радиусов компонентов.

Образование твердых растворов разных типов (замещения, внедрения, упорядоченных, не упорядоченных и др.) создают комбинации различных дислокационных образований с многообразными характеристиками прочности. Измельчение зерна осуществляется легированием и термической обработкой. Наиболее эффективное измельчение структуры достигается при высокотемпературной термомеханической обработке..

Она предусматривает пластическую деформацию аустенита с последующим превращением в мартенсит. В результате высокотемпературной термомеханической обработки обеспечивается наиболее благоприятное сочетание высокой прочности с повышенной пластичностью, вязкостью и сопротивлением разрушению.

Упрочнение растет по мере увеличения концентрации растворенного легирующего элемента и различия в атомных радиусах железа и этого элемента. Наиболее сильно повышают твердость медленно охлажденного феррита Si, Mn, Ni,.т.е те элементы, имеющие отличную от Feα кристаллическую решетку. Слабее влияют Mo, V и Cr, решетки которых изоморфны Feα. Повышение чистоты сплава достигается металлургическими приемами путем удаления вредных примесей серы, фосфора, газообразных элементов - кислорода, водорода, азота.

При введении в сталь легирующих элементов, растворимость которых в решетке железа может изменяться в зависимости от температуры, наблюдается эффект, называемый дисперсионным твердением. Для этого необходимо получить пересыщенный твердый раствор с повышенной концентрацией растворенного элемента. Такой твердый раствор является неравновесным и стремиться к распаду. Процесс распада пересыщенного твердого раствора при комнатной температуре называется естественным старением. .

При некотором нагреве - искусственным старением. При старении избыточный элемент выделяется из кристаллической решетки металла-растворителя в виде мельчайших частиц, которые называют дисперсной фазой. Дисперсная фаза, будучи равномерно распределена в твердом растворе, искажает кристаллическую решетку последнего и изменяет механические свойства сплава. Повышение твердости, прочности наблюдается только в том случае, когда сохраняется когерентность (непрерывность) атомно-кристаллических решеток дисперсной фазы и твердого раствора.

Дисперсионное твердение связано с диффузионными процессами и поэтому продолжительность старения оказывает существенное влияние на эффект дисперсионного твердения. Дисперсионное твердение в сложнолегированной стали с несколькими легирующими элементами часто проявляется совершенно иначе, чем в стали с одним легирующим элементом. Дополнительные легирующие элементы могут увеличивать или уменьшать растворимость основного элемента, вызывающего дисперсионное твердение и тем самым увеличивать или уменьшать эффект упрочнения материала. Дисперсионное твердение сопутствует обычному процессу термической обработки стали и оказывает существенное влияние на ее свойства..

Упрочняющими фазами в сталях могут быть карбиды, нитриды, интерметаллиды, химические соединения и др.

2.2 Упрочнение пластическим деформированием

В результате холодной пластической деформации изменяются свойства металла: повышается прочность, электросопротивление, снижается пластичность, плотность, коррозионная стойкость. Это явление называется наклепом и может быть использовано для изменения свойств металлических материалов. Свойства наклепанного металла изменяются тем сильнее, чем больше степень деформации. Металлы наклепываются в начальной стадии деформирования более интенсивно, а при возрастании деформации механические свойства изменяются незначительно. С увеличением степени деформаций предел текучести растет быстрее временного сопротивления. У сильно наклепанных металлов обе характеристики сравниваются, а удлинение становится равным нулю. Такое состояние наклепанного металла называется предельным; при попытке продолжить деформирование может произойти разрушение металла. В результате наклепа удается повысить твердость и временное сопротивление в 1,5 - 3 раза, а предел текучести в 3 -7 раз. Металлы с ГЦК решеткой упрочняются сильнее, чем металлы с ОЦК решеткой. Среди сплавов с ГЦК решеткой сильнее упрочняются те, у которых энергия дефектов упаковки минимальна (интенсивно наклепываются аустенитная сталь и никель, а алюминий упрочняется незначительно).

Рисунок 5.Зависимость механических свойств от степени деформации

Наклеп понижает плотность металла вследствие нарушений порядка в размещении атомов, при увеличении плотности дефектов и образовании микропор. Уменьшение плотности используют для увеличения долговечности деталей, которые в процессе эксплуатации подвержены переменным нагрузкам.

Наиболее распространенным способом холодного пластического поверхностного деформирования является дробеструйная обработка. Она заключается в воздействии на обрабатываемую поверхность частиц дроби, ускоренных в дробеструйных центробежных или пневматических аппаратах. Для этого используется стальная или чугунная дробь величиной 0,5 - 2,0 мм. Время обработки поверхности детали не превышает 2 - 3 мин., а толщина поверхностного слоя находится в пределах 0,2 - 0,4 мм. В поверхностном наклепанном слое увеличивается плотность дефектов кристаллической решетки, может изменяться форма и ориентация зерен. В поверхностных слоях создаются сжимающие напряжения, тормозящие зарождение и развитие трещин..

Дробеструйная обработка может быть эффективна для сталей различного состава и после различной термической обработки (отжиг, нормализация, закалка, улучшение, цементация и др.). Основное назначение дробеструйной обработки - повышение усталостной прочности. Такой обработке подвергаются пружины, рессоры, шестерни, различные валы и т.д. Особенно эффективна дробеструйная обработка деталей, имеющих галтели, выточки, следы грубой механической обработки и другие концентраторы напряжений.

2.3 Упрочнение термическими методами

Температурное воздействие на различные материалы с целью изменения их структуры и свойств является самым распространенным способом упрочнения в современной технике. Это воздействие может осуществляться чаще при плюсовых температурах, реже - при отрицательных температурах и сочетаться с химическим, деформационным, магнитным, электрическим и др. процессами.

Следуя классификации А.А. Бочвара, в основу которой положены типы фазовых и структурных превращений в металле, различают следующие виды термообработки:

собственно термическая обработка;

термомеханическая обработка;

химико-термическая обработка

Собственно термическая обработка предусматривает только температурные воздействия на металл или сплав. Управляемые структурно-фазовые процессы в стали, которые обеспечивают получение требуемой фазовой и дислокационной структуры, происходят вследствие наличия аллотропии. Термомеханическая обработка (ТМО) - сочетание термического воздействия и пластической деформации. ТМО позволяет получить более высокие прочностные и вызкостно-пластические свойства у стали, чем после обычной закалки и низкого отпуска..

Положительный дополнительный эффект при ТМО объясняется предварительным наклепом аустенита во время пластической деформации. Последствия этого наклепа передаются мартенситу в виде дополнительных, возникающих при наклепе дислокаций, которые, складываются с дислокациями, возникающими при последующем мартенситном превращении, создают более плотную дислокационную структуру.

Такая высокая плотность дислокаций (до 1013 см -2) не порождает возникновение трещин при закалке. Существуют две разновидности термомеханической обработки - высокотемпературная (ВТМО) и низкотемпературная (НТМО). При ВТМО аустенит деформируется при температуре выше линии АС3 до степени деформации 20-30%. При НТМО производится деформация переохлажденного до 400 - 600 0С аустенита, степень деформации составляет 75-90%.

Химико-термическая обработка (ХТО) - сочетание химического и термического воздействия с целью изменения состава, структуры и свойств поверхностного слоя детали в необходимом направлении. .

При этом происходит поверхностное насыщение металлического материала соответствующим элементом (C, N, B, Al, Cr, Si, Ti и др.) путем его диффузии в атомарном состоянии из внешней среды (твердой, газовой, паровой, жидкой) при высокой температуре.

Процесс химико-термической обработки состоит из трех элементарных стадий:

выделение диффундирующего элемента в атомарном состоянии благодаря реакциям, протекающим во внешней среде;

контактирование атомов диффундирующего элемента с поверхностью стального изделия и проникновение (растворение) их в решетку железа (адсорбция);

диффузия атомов насыщающего элемента вглубь металла.

2.4 Поверхностное упрочнение

Среди методов поверхностного упрочнения наибольшее распространение получили поверхностная закалка, обработка лазером и электроискровое легирование. При поверхностной закалке на некоторую заданную глубину закаливается только верхний слой, тогда как сердцевина изделия остается незакаленной..

Основное назначение поверхностной закалки: повышение твердости, износостойкости и предела выносливости обрабатываемого изделия. Сердцевина изделия остается вязкой и воспринимает ударные нагрузки. Поверхностную закалку осуществляют несколькими методами: нагревом токами высокой частоты; нагревом.

Поверхностную закалку осуществляют несколькими методами:

нагревом токами высокой частоты (ТВЧ);

нагревом газовым пламенем.

Закалка ТВЧ впервые предложена В. П. Вологдиным. При закалке по этому методу стальное изделие размещают внутри индуктора в форме спирали или петли.

Ток высокой частоты подводится от генератора к индуктору. Во время прохождения тока через индуктор в поверхностных слоях изделия за счет индукции возникает ток противоположного направления, нагревающий сталь. В связи с тем, что скорость нагрева ТВЧ значительно выше скорости нагрева в печи, фазовые превращения в стали происходят при более высоких температурах и температуры нагрева под закалку повышаются. Например, при нагреве ТВЧ со скоростью 400 °С/с температура закалки стали 40 с 840…860 °С повышается до 930…980 °С.

После прогрева ТВЧ стали до температуры закалки изделие охлаждают водой. При закалке ТВЧ получается высокодисперсная структура кристаллов мартенсита, обеспечивающая более высокую твердость и прочность стали, чем при печном нагреве..

Рисунок 6.Схема нагрева токами высокой частоты: 1 - деталь; 2 - индуктор; 3 - магнитное поле; I - направление тока в индукторе; II - направление тока в детали

2.5 Плазменное поверхностное упрочнение деталей

Одной из наиболее перспективных обработок является плазменная технология, интенсивно разрабатываемая как в нашей стране, так и за рубежом.

Использование низкотемпературной плазмы эффективно не только для переплава металлов и сплавов; напыления износостойких, жаропрочных и коррозионностойких покрытий резки и сварки различных материалов, но и для поверхностного упрочнения различных изделий.

Плазменное поверхностное упрочнение находит широкое применение как в условиях мелкосерийного и единичного (в том числе ремонтного), так и крупносерийного и массового производства. Сущность его заключается в термических фазовых и структурных превращениях, происходящих при быстром концентрированном нагреве рабочей поверхности детали плазменной струей (дугой) и теплоотводе в материал детали.

2.6 Вакуумное ионно-плазменное упрочнение, ионное магнетронное распыление, ионное легирование

Вакуумное ионно-плазменное упрочнение Среди методов нанесения защитных покрытий, основанных на воздействии на поверхность детали потоков частиц и квантов с высокой энергией, большое внимание уделяется вакуумным ионно-плазменным методам. Характерной их чертой является прямое преобразование электрической энергии в энергию технологического воздействия, основанное на структурно-фазовых превращениях в осажденном на поверхности конденсате или в самом поверхностном слое детали, помещенной в вакуумную камеру.

Основным достоинством данных методов является возможность создания весьма высокого уровня физико-механических свойств материалов в тонких поверхностных слоях, нанесение плотных покрытий из тугоплавких химических соединений, а также алмазоподобных, которые невозможно получить традиционными методами. Кроме того, эти методы позволяют:

Обеспечивать высокую адгезию покрытия к подложке;

Получать равномерные покрытия по толщине на большой площади;

Варьировать состав покрытия в широком диапазоне, в пределах одного технологического цикла;

Получить высокую чистоту поверхности покрытия;

Обеспечивать экологическую чистоту производственного цикла.

Методы вакуумной ионно-плазменной технологии:

) Модифицирование поверхностных слоев:

Ионно-диффузионное насыщение; (ионное азотирование, науглероживание, борирование и др.);

Ионное (плазменное) травление (очистка);

Ионная имплантация (внедрение);

) Нанесение покрытий:

Полимеризация в тлеющем разряде;

ионное осаждение (в триодной распылительной системе, диодной распылительной системе, с использованием разряда в полом катоде);

Электродуговое испарение;

Ионно-кластерный метод;

Катодное распыление (на постоянном токе, высокочастотное);

Химическое осаждение в плазме тлеющего разряда.

Современные вакуумные ионно-плазменные методы упрочнения (модифицирования) поверхностей деталей машин включают следующие этапы:

Генерацию (образование) корпускулярного потока вещества;

Активизацию, ускорение и фокусировку;

Конденсацию и внедрение в поверхность деталей (подложек).

Испарение: переход конденсированной фазы в пар осуществляется в результате подводок тепловой энергии к испаряемому веществу..

Заключение

При рыночной экономике одной из важных задач является обеспечение качества деталей машин, повышение их эксплуатационных показателей. Эти показатели определяются параметрами качества поверхностного слоя. Около 70% причин выхода из строя машин и механизмов связано с износом узлов трения. Следовательно, одним из направлений обеспечения качества машин является повышение износостойкости этих деталей, которое может быть достигнуто путем включения периода приработки на стадию изготовления за счет применения соответствующих технологических процессов изготовления. Износ зависит от многих параметров качества поверхностного слоя, поэтому важно знать возможности управления комплексом этих параметров в процессе обработки, включая геометрические, механические, физические и химические структурные свойства. При производстве деталей машин широко применяются различные методы поверхностного упрочнения. Изложенные в пособии технологии поверхностного упрочнения деталей машин позволяют достигать требуемого качества изделия и формировать у студентов системный подход к решению актуальных задач повышения долговечности деталей и узлов машин.

Список литературы

1. Научные основы материаловедения: Учебн для вузов / Б.Н. Пастухова. - М.: Изд-во МВТУ им. Н.Э. Баумана, 2009. - 336с.

Материаловедение и технология металлов: Учебник /под ред. Г.П. Фетисова. - М.: Высш шк., 2008. - 640с.

Металловедение и технология металлов: Учебн. для вузов /Ю.П. Солнцев, В.А. Веселов, В.П. Деменцова и др. - М.: Металлургия, 2011.-512с.

Лахтин Ю.М., Леонтьева В.П. Материаловедение; Учеб. для втузов.- М.: Машиностроение, 2010. - 528с.: ил.

Основной принцип, лежащий в основе повышения прочности металлов и сплавов, – создание препятствий, затрудняющих перемещение дислокаций. Упрочнение достигается путем термической обработки или пластической деформации металлов и сплавов за счет увеличения плотности дефектов (см. рис. 1.16).

Термическая обработка – процесс теплового воздействия на материалы для целенаправленного изменения их структуры и свойств.

Возможность упрочнения сплавов с помощью термической обработки определяется превращениями определенного типа, которые происходят в сплавах, находящихся в твердом состоянии. Эти превращения могут быть диффузионными и бездиффузионными.

При бездиффузионных превращениях атомы перемещаются па весьма малые расстояния, не более 1...2 периодов кристаллической решетки. Скорость превращений очень велика и значительно превосходит скорости нагрева и охлаждения сплавов при термической обработке, поэтому управлять такими превращениями или регулировать их весьма трудно или невозможно. Примером бездиффузионного превращения может служить полиморфное превращение, например, Fea ↔ Fe .

При диффузионных превращениях атомы перемещаются на значительные расстояния (до нескольких мм), превращения протекают медленно (например, продолжительность процесса азотирования, описанного ниже, достигает нескольких суток). Поэтому степень прохождения этих превращений можно регулировать при термической обработке, изменяя скорость нагрева или охлаждения, температуру или время выдержки. Примером диффузионного превращения может служить частичный распад твердого раствора, при котором в результате уменьшения растворимости одного из компонентов при понижении температуры из твердого раствора выделяется вторичная фаза (см. 3.4.4 и рис. 3.8).

Следует иметь в виду, что упрочняющей обработке подвергают заготовки, имеющие определенную форму, полученную в результате формообразующих операций (например, обработкой резанием). Для облегчения выполнения таких операций металл должен обладать хорошими технологическими свойствами – невысокими твердостью и прочностью, это достигается специальными видами термической обработки.

Упрочнение термической обработкой

Перекристаллизация

Этот метод упрочнения основан на бездиффузионных превращениях. При перекристаллизации упрочнение сплавов достигается за счет измельчения зерен, которое происходит при полиморфном превращении (изменение типа кристаллической решетки) в процессе нагрева и охлаждения сплава.

Рассмотрим процесс перекристаллизации на примере сплавов системы "Fe – Cr" (рис. 3.14). На диаграмме α – твердый раствор хрома в Fea; γ – твердый раствор хрома в Fe . Эти твердые растворы отличаются типом кристаллической решетки: a-твсрдый раствор имеет кубическую объемно- центрированную кристаллическую решетку; γ-твердый раствор – кубическую гранецентрированную. Перекристаллизация возможна в сплавах, концентрация хрома в которых ниже определяемой проекцией точки а а".

Рассмотрим превращения, протекающие при нагреве и охлаждении в одном из таких сплавов. До упрочнения структура сплава (заготовки) состоит из крупных зерен α-твердого раствора (рис. 3.15, а). Прочность сплава в таком состоянии невелика, так как мала протяженность межзеренных границ, которые являются препятствиями на пути перемещения дислокаций. При нагреве сплава крупнозернистая структура сохраняется до точки 1 – температуры начала полиморфного превращения (см. рис. 3.14). При температуре выше точки 1

Рис. 3.14. Фрагмент диаграммы состояния "Fe – Cr"

Рис. 3.15.

а в – нагрев; в – д – охлаждение

α-твсрдый раствор становится неустойчивым и по границам его зерен происходит образование новой фазы – γ, размеры зерен которой значительно меньше зерен α-фазы (рис. 3.15, 6). При дальнейшем повышении температуры (до точки 2) количество γ-фазы увеличивается за счет образования новых мелких зерен. В точке 2 полиморфное α → γ превращение заканчивается, α-фаза полностью заменяется γ-фазой, имеющей более мелкие зерна (рис. 3.15, в). Нагрев выше точки 2 (до точки 3) не изменяет фазового состава сплава, но приводит к укрупнению зерен γ-фазы. В связи с этим при проведении термической обработки сплав нагревают лишь немного выше точки 2 (на 30...50 °С), что гарантирует завершение α → γ превращения, но не вызывает увеличения размеров зерен γ-твердого раствора.

После нагрева до указанной температуры и необходимой выдержки сплав охлаждают. Охлаждение выполняют медленно для получения равновесной структуры и снятия напряжений, возникающих при фазовых превращениях. При охлаждении до точки 2 начинается обратное (γ → а) полиморфное превращение с образованием по границам зерен γ-твердого раствора кристаллитов α-фазы, более мелких, чем у исходной γ-фазы (рис. 3.15, г). При понижении температуры до точки 1 количество α-фазы возрастает за счет появления новых мелких зерен. В точке 1 полиморфное превращение заканчивается, структура сплава, сформированная окончательно в результате двойной перекристаллизации, состоит из мелких зерен α-твердого раствора (рис. 3.15, l)).

Таким образом, в результате термической обработки фазовый состав сплава не изменился, изменилась его структура – из крупнозернистой превратилась в мелкозернистую. Уникальность этого метода упрочнения заключается в том, что в результате измельчения зерна повышается не только прочность, но и пластичность сплава. Все остальные методы, повышающие прочность сплавов, одновременно снижают их пластичность.

Полная перекристаллизация, т.е. α → γ и γ → α превращения при нагреве и охлаждении соответственно, во всем объеме возможна только в сплавах с концентрацией хрома не более b" – проекции точки b (см. рис. 3.14). Сплавы, лежащие в интервале b" а", невозможно упрочнить во всем объеме, так как при нагреве не произойдет полной перекристаллизации, возможно лишь превращение α → α + γ и, таким образом, лишь частичное упрочнение.

Помимо рассмотренной диаграммы состояния упрочнение за счет полиморфного превращения возможно в сплавах, диаграмма состояния которых представлена на рис. 3.16. Здесь сплавы с содержанием компонента В до F можно упрочнить во всем объеме, лежащие в интервале F – D частично. Сплавы с содержанием компонента В более D упрочнить невозможно, поскольку при нагреве их структура не меняется вплоть до начала плавления.

На мировом рынке технологий по упрочнению поверхности инструмента всегда наиболее широко были представлены два метода: метод химического осаждения (Chemical Vapour Deposition - CVD) и метод физического осаждения покрытий (Physical Vapour Deposition - PVD). В нашей стране более широкое промышленное применение получили PVD способы нанесения защитных покрытий. Дело в том, что технологии CVD подразумевают использование дорогостоящих высокочистых химических реагентов (TiCl4, NH3 и т.д.) и прецизионных дозаторов химических прекурсоров, точный контроль продуктов химических реакций в рабочей камере и т.п. А нанесение PVD покрытий при помощи дугового или тлеющего разряда (магнетронa) обладает большей производительностью и не столь чувствительно к незначительным отклонениям технологических параметров.

Помимо нанесения износостойких покрытий на поверхности инструментов существуют еще четыре группы технологий поверхностного упрочнения режущих инструментов:

1. Методы механического упрочнения: вибрационный, дробеструйный, взрывом и т.д. Наиболее часто используют для упрочнения инструментов из быстрорежущей стали и твердых сплавов. Поверхностное пластическое деформирование (ППД) – наклеп поверхностного слоя на глубину 0.2-0.8 мм с целью создания в нем остаточного напряжения сжатия. При наклепе поверхностный слой расплющивается. Удлинению поверхностного слоя препятствует сила сцепления с нижележащими слоями металла. Вследствие этого в наклепанном слое возникают двухосные напряжения сжатия, а в толще основного металла незначительные реактивные напряжения растяжения. Складываясь с рабочими напряжениями растяжения, остаточные напряжения сжатия уменьшают, а при достаточно больших значениях компенсируют первые. Возникающие при наклепе множественные искажения структуры (деформация зерна, местные пластические сдвиги) эффективно тормозят развитие усталостных повреждений и расширяют область существования нераспостроняющихся трещин, увеличение которых обуславливает существование разрушающих напряжений. Эффективен наклеп в напряженном состоянии, представляющий собой сочетание упрочнения перегрузкой с наклепом. При этом способе деталь нагружают нагрузкой того же напряжения, что и рабочая, вызывая в материале упругие или упругопластические деформации. После снятия нагрузки в поверхностном слое возникают остаточные напряжения сжатия. Наклепанный слой чувствителен к нагреву. При температурах 400-500 о С действие наклепа полностью исчезает, из-за наступающего при этих температурах процесса рекристаллизации, устраняющего кристалло-структурные изменения, внесенные наклепом. Основные разновидности упрочнение поверхности пластической деформацией: дробеструйная обработка, обкатывание, чеканка, алмазное выглаживание.



Дробеструйная обработка заключается в наклепе поверхностного слоя потоком закаленных шариков (диаметр 0.5-1.5 мм), создаваемым центробежными дробеметками. Качество поверхности при данном процессе немного снижается. Плоские поверхности упрочняют обкатыванием шариками, установленными во вращающемся патроне. Заготовке придают движение продольной и поперечной подачи, при правильно выбранном режиме обкатывания, остаточные напряжения сжатия в поверхностном слое составляют 600-1000 МПа. Глубина уплотнения слоя 0.2-0.5 мм. Данный процесс улучшает качество поверхности детали. Поверхность вращения упрочняют обкатыванием стальными закаленными роликами. Силу прижатия ролика выбирают с таким ращетом, чтобы создать в поверхностном слое напряжения, превышающие предел текучести материала в условиях всестороннего сжатия (для стали 5000-6000 МПа). Чеканку производят бойками со сферической рабочей поверхностью, приводимыми в колебания пневматическими устройствами. Частота колебаний и скорость вращения заготовки должны быть согласованы таким образом, чтобы наклепанные участки перекрывали друг друга.

Алмазное выглаживание заключается в обработке предварительно шлифованной и полированной поверхности закругленными алмазными резцами (радиус 2-3 мм). Поверхностный слой уплотняется до глубины 0.3-0.5 мм.

2. Методы химико-термической обработки (ХТО) инструментальных сталей: азотирование, цементация, карбонитрация, оксидирование, борирование в газовых и жидких средах, тлеющем газовом электрическом разряде (ионное азотирование). Высокую поверхностную прочность обеспечивает изотермическая закалка, а также термомеханическая обработка поверхности детали. При поверхностной закалке (газопламенная закалка) и химико-термической обработке (цементование) упрочнение обусловлено главным образом возникновением в поверхностном слое остаточных сжимающих напряжений вследствие образования структур большего удельного объема (нитриды и карбонитриды при нитроцементации и азотировании), чем структуры основного металла. Расширение поверхностного слоя тормозит сердцевина, сохраняющая исходную перлитную структуру, вследствие чего в поверхностном слое возникают двухслойные напряжения сжатия. В нижних слоях развиваются реактивные растягивающие напряжения, имеющие малое значение, из-за незначительности сечения термически обработанного слоя сравнительно с сечением сердцевины. Создание предварительных напряжений сжатия снижает среднее напряжение в области сжатия, тем самым повышается предел выносливости. Газовая закалка повышает предел выносливости по сравнению с исходной конструкцией из необработанной стали в 1.85 раза. Наиболее эффективным способом обработки является азотирование, которое практически полностью устраняет внешних концентраторов напряжений. Азотирование не вызывает изменения формы и размеров детали. Азотированный слой обладает повышенной коррозие - и термостойкостью. Твердость и упрочняющий эффект сохраняются вплоть до температур 500-600 о С. Оптимальные толщины слоя уплотнения при цементации 0.4-0.8 мм, цементовании и азотировании 0.3-0.5 мм, закалке с нагревом и газовой закалке 2-4 мм. Качество поверхности значительно улучшается.



Электроискровое, магнитное, ультразвуковое упрочнение. Данные метода редко применяются для обработки режущих инструментов.

Физическое упрочнение: лазерная обработка, ионная имплантация. Технология ионной имплантации является на сегодня одной из наиболее перспективной с точки зрения создания композиционных материалов с оптимальным набором поверхностных и объемных свойств.

Ионная имплантация – это процесс, в котором практически любой элемент может быть внедрен в приповерхностную область любого твердого тела – мишени (подложки), помещенной в вакуумную камеру, посредством типа высокоскоростных ионов, имеющих энергию в несколько мегаэлектроновольт.

Ионы внедряются в материал мишени (подложки) на глубину от 0,01мкм до 1мкм, теряя энергию в процессе столкновений с атомами основы.

Профиль (распределение) концентрации примеси по глубине для большинства комбинаций – внедряемый атом – мишень (подложка) может быть вычислен. Для малой дозы ионов (малого числа ионов на единицу площади) профиль распределения концентрации примеси по глубине обычно хорошо описывается гауссовым распределением с центром в середине области распространения. В результате ионной имплантации образуется поверхностный слой сплава с изменяющимся составом, который не обладает выраженной поверхностью раздела, характерной для осажденного покрытия.

Преимуществом ионной имплантации, как метода модифицирования поверхности по сравнению с другими методами упрочнения поверхности, являются:

Увеличение растворимости в твердом состоянии;

Независимость образования сплавов от констант диффузии;

Возможность быстрого изменения состава сплава;

Независимость от процессов протекаемых в объеме материала;

Возможность процесса при низких температурах;

Весьма незначительное изменение размеров обрабатываемой детали;

Отсутствие проблемы аугезии, так как не существует ярко выраженной поверхности раздела;

Контролируемая глубина распределения концентрации;

Вакуумная чистота;

Высокая контролируемость и воспроизводимость.

Основным недостатком ионной имплантации является обработка только той части поверхности инструмента, которая находится непосредственно в области действия пучка ионов.

38. Охарактеризуйте перспективы развития инструментального производства.

«Как называется наш предмет?! Перспективы развития инструментального производства, а какие тут перспективы? Перспектив - нет» © Кряжев Ю.А.

Состояние отечественного инструментального производства, начиная с конца прошлого века, характеризуется как упадочное, выражающееся в виде морального и физического износа большинства основных производственных фондов, ухудшения качества, увеличенного времени обработки и изготовления, роста уровня брака. В результате сокращения производства инструментальной продукции, ухудшения ее качества, увеличилась доля зарубежных поставщиков на внутреннем рынке, что привело к резкому сокращению объемов заказов у отечественных производителей.

Для снижения зависимости от импорта и наращивания объемов экспортируемой продукции необходимы мероприятия по комплексной реконструкции инструментального производства, с применением инновационных инструментальных технологий, позволяющих сократить себестоимость продукции и получить конкурентные преимущества перед изделиями зарубежных поставщиков в виде экономии времени и ресурсов на производство единицы продукции .

На данный момент ёмкость российского рынка технологической оснастки составляет более 357 млн долл. При этом концентрация производителей и потребителей инструментальной оснастки крайне неравномерна, так наибольшая концентрация инструментальных заводов наблюдается в Центральном, Поволжском и Уральском регионах. Помимо этого, по мнению экспертов, на сегодняшний день рынок инструментальной оснастки является растущим, что обусловлено в первую очередь ростом спроса на технологическую оснастку среди машиностроительных предприятий, ВПК и увеличением количества предприятий, занимающихся производством и перепродажей технологической оснастки. Однако существующие производители инструментальной оснастки не располагают мощностями, способными удовлетворить растущий спрос. Для выхода из сложившейся ситуации возможны несколько вариантов, среди которых :

Стимулирование создания новых предприятий, осуществляющих производство и реализацию инструментальной оснастки с применением традиционных технологий металлообработки: обработка давлением; токарные, фрезерные, шлифовальные и строгальные методы обработки;

Обновление основных средств инструментальных предприятий, в том числе приобретение оборудования для аддитивных технологий.

Тенденции развития металлообрабатывающей отрасли характеризуются переходом к автоматизации всего цикла производства изделий с предварительным проектированием объемных моделей изделий в CAD-, CAM-системах. Применение САПР в сочетании с CAD-системами позволяет осуществить разработку объемной модели продукции, ее быструю правку и доработку. В сочетании с оборудованием, позволяющим воплощать полученные модели в металле, пластике или другом материале, существенно сокращаются затраты времени на технологический процесс производства изделий. Среди оборудования, подразумевающего производство продукции на основе компьютерной модели, можно выделить следующее :

Фрезерные станки с ЧПУ: перемещение фрезы осуществляется вдоль трех осей (X, Y – горизонтальная плоскость, Z – вертикальная) на основании траектории, полученной по объемной модели изделия в CAD-, CAM-системе. В некоторых фрезерных установках добавляется поворотный стол, что позволяет исключить движение вдоль одной из горизонтальных координат и ускорить процесс обработки;

5-ти координатные обрабатывающие центры: существенным отличием данного оборудования от фрезерных станков с ЧПУ является наличие двух дополнительных степеней свободы, позволяющих осуществлять вращательное движение шпинделя или рабочего стола вокруг двух осей, что существенно расширяет возможности оборудования по обработке криволинейных поверхностей;

Станки гидроабразивной резки: предназначены для раскроя листового материала струей жидкости с частицами абразива с давлением до 6000 атм., при этом толщина обрабатываемого металла может достигать 300 мм и более;

Оборудование для электроэрозионной резки: процесс обработки основывается на явлении электрической эрозии – изменение размеров формы и свойств металла под действием электрических разрядом, создаваемых генератором электрических импульсов, с температурой от 8000 до 12000 0 С.

3D-принтеры на базе технологий FDM, LENS, DMD, SLS: осуществляют производство объемных изделий из пластиковых (FDM) и металлических материалов (LENS, DMD, SLS) методом послойного наплавления материала на подложку или заготовку изделия.

Промышленное оборудование на основе аддитивных технологий в сочетании с ЧПУ, как правило, характеризуется более высокой стоимостью, по сравнению с традиционными фрезерными, шлифовальными и прочими системами. Однако более высокая стоимость оправдывается рядом преимуществ и быстрыми сроками окупаемости за счет дополнительных денежных потоков из-за существенного сокращения сроков выполнения заказов .

Преимущества такого подхода:

Сокращение времени производства готовой продукции: применение 5-ти координатного обрабатывающего центра и фрезерного станка ЧПУ приводит к сокращению времени обработки в 1,5–2 раза, повышению производительность в 2–3 раза и сокращению потерь материала на 5–10%;

Повышение прочностных и износостойких свойств изделий за счет нанесения защитного покрытия с возможностью сочетания материалов (LENS, DMDтехнологии);

Возможность быстрого изготовления или моделирования литейных форм со сложными каналами прокачки жидкости, повышающих теплообмен и прочностные характеристики изделия;

Быстрая переналадка оборудования для мелкосерийного и штучного производства;

Возможность быстрого прототипирования, и ряд других положительных сторон.

Таким образом, организация производственного процесса на предприятиях по выпуску инструментальной оснастки на основе аддитивных технологий в сочетание с ЧПУ позволит получить конкурентные преимущества в виде повышения производительности труда , сокращения затрат на цикл тестирования и производства готовой продукции .

Свойства аддитивных технологий позволяют их использовать в различных сферах (рисунок 1).

Рис. 1. Применение продукции на основе аддитивных технологий

Широкое применение аддитивных технологий в сфере инструментального производства позволит упростить процесс производства отдельных видов продукции, отказавшись от некоторых видов оборудования.

Большинство предприятий, изготавливающих технологическую оснастку, ориентируется на изготовление серийной продукции, ограничивая ассортимент выпускаемых изделий, что обусловлено требованием к снижению затрат на организацию технологического процесса серийного и массового производства. В то же время, применение оборудования на основе аддитивных технологий позволяет эффективно осуществлять работы по созданию опытных образцов, а также работы для выпуска небольших партий и единичных изделий.

Таким образом, предприятие, внедрившее в производство новые методы в технологиях металлообработки, имеет преимущество, т. к. практика показывает, что большая часть ассортимента, планируемого к производству на новом оборудовании, будет выпускаться под часто меняющиеся заказы клиентов. Это требует обеспечить определенную гибкость, возможность быстрой переориентации на производство нового продукта, адаптации к изменяющимся рыночным условиям .

Таким образом, дальнейшее развитие, на наш взгляд, в первую очередь связано с переходом (по мере внедрения в промышленность и устойчивой коммерциализации нововведений) на новейшие разработки в области формообразования, таких как: современные 3D-принтеры, новые технологии и оборудование водоструйной резки, лазерно-плазменного раскроя и др.

Основными методами упрочнения поверхности деталей являются химико-термическая обработка, поверхностная закалка и деформирование поверхности в холодном состоянии (поверхностный наклеп).

Химико-термическая обработка состоит в насыщении поверхности детали каким-либо элементом с последующей термической обработкой. Наиболее распространенные виды химико-термической обработки цементация (насыщение поверхности углеродом) и азотирование (насыщение поверхности азотом).

Цементация проводится с целью получения высокой твердости и износоустойчивости поверхности при сохранении более мягкой и вязкой сердцевины детали. Поэтому цементации всегда подвергают малоуглеродистые стали (0,2%С) или легированные с низким углеродом. Наиболее распространенные детали подвергаемые цементации - зубчатые колеса.

Вещество, поставляющее углерод при цементации, называют карбюризатором. Различают цементацию в твердом карбюризаторе (коксик или древесный уголь с добавлением до 30% соды – Na 2 CO 3) и в газовом (СО).

Детали выдерживают в карбюризаторе от 6 до 12 часов (в зависимости от требуемой толщины не углероженного слоя 2-4мм) при температуре 900-950 0 (в аустенитной области). При этом содержание углерода в поверхностных слоях повышается до 1-1,2%.

Толщину неуглероженного слоя контролируют по специальному образцу-свидетелю, который проходит цементацию вместе с деталями.

После цементации детали подвергают термической обработке по одному из вариантов представленных на рис.18. Наиболее часто применяю закалку с

низким отпуском. Вариант с двумя закалками делают для ответственных деталей (первая закалка от температуры 900 0 для измельчения зерна и устранения сетки цементита в поверхностном слое, вторая от 760-790 0 для получения оптимальной твердости поверхности).

Азотирование проводится в атмосфере аммиака, который разлагаясь при температуре 500-550 0 поставляет активный атомарный азот диффундирующий в поверхность детали. В отличии от цементации высокая твердость азотированной поверхности получается не за счет мартенсита, а за счет очень твердых нитридов. Поэтому для азотирования берут среднеуглеродистые стали содержащие сильные нитридообразующие элементы (Al, Cr, Mo). Классическая сталь для азотируемых деталей 38ХМЮА. Продолжительность азотирования составляет до 48 часов, толщина слоя 0,2-0,5 мм.

Азотирование является окончательной обработкой готовых деталей, никакой термической обработки после азотирования не проводят.

В результате азотирования достигается высокая твердость и износоустойчивость поверхности, повышается сопротивление возникновению трещин при знакопеременных нагрузках (усталостная прочность) и коррозионная стойкость.


Поверхностная закалка состоит в быстром нагреве поверхности детали до аустенитного состояния с последующим охлаждением в воде. В результате на поверхности образуется твердая структура мартенсита, а внутри сохраняется феррито-перлитная структура с достаточно высокой вязкостью. После поверхностной закалки детают низкий отпуск, либо оставляют закаленное состояние без отпуска.

Поверхностной закалке подвергают среднеуглеродистые стали (0,4-0,45%С), либо легированные для увеличения прочности сердцевины деталей. Такой закалке подвергают зубья шестерен, звездочек, шейки валов, головку рельсов и др.

Быстрый нагрев поверхности осуществляется токами высокими частотами (до 1 млн.гц). Сущность такого нагрева состоит в том, что через медный индуктор (спиральная или иной формы трубка охлаждаемая внутри водой) пропускают ток высокой частоты. Вокруг индуктора возникает переменное магнитное поле. Закаливаемую деталь помещают в поле индуктора и за счет поверхностного эффекта поверхность детали быстро разогревается (обычно за 10-15 сек.). Чем больше частота тока, тем больше поверхностный эффект, меньше время нагрева и меньше глубина закаленного слоя. Обычно она составляет 1-3 мм. Когда поверхность нагрелась до требуемой температуры (850-900 0), деталь охлаждают погружая в бак с водой или пропуская через специальное душирующее устройство - спреер.

На рис.19 представлено сечение зуба шестерни после цементации и после закалки ТВЧ. Видно, что свойства шестерни подвергнутой цементации предпочтительней, однако, стоимость закалки ТВЧ значительно меньше.

Закалка ТВЧ имеет ряд положительных качеств:

1. Высокая производительность;

2. Высокое качество закалки (не растет зерно, почти нет окалины);

3. Очень малы деформации (уменьшаются пропуски на механическую обработку-шлифовку);

4. Экономно расходуется электроэнергия, которая идет только на нагрев части детали;

5. Процесс хорошо поддается механизации и автоматизации;

6. Улучшаются условия труда;

7. Во многих случаях заменяет более дорогую операцию-цементацию

В ремонтном производстве иногда применяют поверхностную закалку с нагревом пламенем газовой горелки. Однако, такой процесс трудно контролировать и результат при его применении зачастую непредсказуем.

Понравилась статья? Поделитесь ей
Наверх