Взаимное расположение прямой и плоскости. признак параллельности прямой и плоскости Взаимное расположение прямой и плоскости в кубе

Прямая принадлежит плоскости , если имеет две общие точки или одну общую точку и параллельна какой-либо прямой, лежащей в плоскости. Пусть плоскость на чертеже задана двумя пересекающимися прямыми. В данной плоскости требуется построить две прямые m и n в соответствии с этими условиями (Г (а b)) (рис. 4.5).

Р е ш е н и е. 1. Произвольно проводим m 2 , так как прямая принадлежит плоскости, отмечаем проекции точек пересечения ее с прямыми а и b и определяем их горизонтальные проекции, через 1 1 и 2 1 проводим m 1.

2. Через точку К плоскости проводим n 2 ║m 2 и n 1 ║m 1 .

Прямая параллельна плоскости , если она параллельна какой-либо прямой, лежащей в плоскости.

Пересечение прямой и плоскости. Возможны три случая расположения прямой и плоскости относительно плоскостей проекций. В зависимости от этого определяется точка пересечения прямой и плоскости.

Первый случай – прямая и плоскость – проецирующего положения. В этом случае точка пересечения на чертеже имеется (обе ее проекции), ее нужно только обозначить.

П р и м е р. На чертеже задана плоскость следами Σ (h 0 f 0) – горизонтально проецирующего положения – и прямая l – фронтально проецирующего положения. Определить точку их пересечения (рис. 4.6).

Точка пересечения на чертеже уже есть – К(К 1 К 2).

Второй случай – или прямая, или плоскость – проецирующего положения. В этом случае на одной из плоскостей проекций проекция точки пересечения уже имеется, ее нужно обозначить, а на второй плоскости проекций – найти по принадлежности.

П р и м е р ы. На рис. 4.7, а изображена плоскость следами фронтально проецирующего положения и прямая l общего положения. Проекция точки пересечения К 2 на чертеже уже имеется, а проекцию К 1 необходимо найти по принадлежности точки К прямой l . На
рис. 4.7, б плоскость общего положения, а прямая m – фронтально проецирующего, тогда К 2 уже есть (совпадает с m 2), а К 1 нужно найти из условия принадлежности точки К плоскости. Для этого через К проводят
прямую (h – горизонталь), лежащую в плоскости.

Третий случай – и прямая, и плоскость – общего положения. В этом случае для определения точки пересечения прямой и плоскости необходимо воспользоваться так называемым посредником – плоскостью проецирующей. Для этого через прямую проводят вспомогательную секущую плоскость. Эта плоскость пересекает заданную плоскость по линии. Если эта линия пересекает заданную прямую, то есть точка пересечения прямой и плоскости.

П р и м е р ы. На рис. 4.8 представлены плоскость треугольником АВС – общего положения – и прямая l – общего положения. Чтобы определить точку пересечения К, необходимо через l провести фронтально проецирующую плоскость Σ, построить в треугольнике линию пересечения Δ и Σ (на чертеже это отрезок 1,2), определить К 1 и по принадлежности – К 2 . Затем определяется видимость прямой l по отношению к треугольнику по конкурирующим точкам. На П 1 конкурирующими точками взяты точки 3 и 4. Видима на П 1 проекция точки 4, так как у нее координата Z больше, чем у точки 3, следовательно, проекция l 1 от этой точки до К 1 будет невидима.

На П 2 конкурирующими точками взяты точка 1, принадлежащая АВ, и точка 5, принадлежащая l . Видимой будет точка 1, так как у нее координата Y больше, чем у точки 5, и следовательно, проекция прямой l 2 до К 2 невидима.

Расположение

Признак: если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.

1. если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

2. если одна из 2х прямых параллельна данной, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ. ПАРАЛЛЕЛЬНОСТЬ ПЛОСКОСТЕЙ

Расположение

1. плоскости имеют хотя бы 1 общую точку, т.е. пересекаются по прямой

2. плоскости не пересекаются, т.е. не имеют ни 1 общей точки, в этом случае они наз параллельными.

признак

если 2 пересекающиеся прямые 1 плоскости соответственно параллельны 2 прямым другой плоскости, то эти плоскости параллельны.

Св-во

1. если 2 параллельные плоскости пересечены 3, то линии их пересечения параллельны

2. отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ. ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.

Прямые наз перпендиулярными , если они пересекаются под <90.

Лемма: если 1 из 2 параллельных прямых перпендикулярна к 3й прямой, то и другая прямая перпендикулярна к этой прямой.

Прямая наз перпендикулярной к плоскости, если она перпендикулярна к любой прямой в этой плоскости.

Теорема: если 1 их 2х параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Теорема: если 2 прямые перпендикулярны к плоскости, то они параллельны.

Признак

Если прямая перпендикулярна к 2м пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.



ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ

Построим плоскость и т.А, не принадлежащ плоскости. Их т.А проведем прямую, перпендик плоскости. Точку пересечения прямой с плоскостью обознач Н. Отрезок АН – перпендикуляр, проведенныйиз т.А к плоскости. Т.Н – основание перпендикуляра. Озьмем в плоскости т.М, не совпадающую с Н. Отрезок АМ – наклонная, проведенная из т.А к плоскости. М – основание наклонной. Отрезок МН – проекция наклонной на плоскость. Перпендикуляр АН – расстояние от т.А до плоскости. Любое расстояние – это часть перпендикуляра.

Теорема о 3 перпендикулярах:

Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ

Углом между прямой и плоскостью наз угол между этой прямой и ее проекцией на плоскости.

ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Двугранным углом наз фигура, образованная прямой и 2 полуплоскостями с общей границей а, не принадлеж одной плоскости.

Граница а – ребро двугранного угла. Полуплоскости – грани двугран угла. Для того, чтобы измерить двугранный угол. Нужно построить внутри него линейный угол. Отметим на ребре двугран угла какую-нибудь точку и в каждой грани из этой точки проведем луч, перпендикулярно к ребру. Образованный этими лучами угол наз линейным глом двугран угла. Их внутри двугран угла может быть бесконечно много. Все они имеют одинак величину.

ПЕРПЕНДИКУЛЯРНОСТЬ ДВУХ ПЛОСКОСТЕЙ

Две пересекающиеся плоскости наз перпендикулярными, если угол между ними равен 90.

Признак:

Если 1 из 2х плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

МНОГОГРАННИКИ

Многогранник – поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело. Грани – многоугольники, из которых составлены многогранники. Ребра – стороны граней. Вершины – концы ребер. Диагональю многогранника наз отрезок, соединяющий 2 вершины, не принадлежащие 1 грани. Плоскость, по обе стороны от которой имеются точки многогранника, наз. секущй плоскостью. Общая часть многогранника и секущей площади наз сечением многогранника. Многогранники бывают выпуклые и вогнутые. Многогранник наз выпуклым , если он расположен по одну сторону от плоскости каждой его грани (тетраэдр, параллепипед, октаэдр). В выпуклом многограннике сумма всех плоских углов при каждой его вершине меньше 360.

ПРИЗМА

Многогранник, составленный из 2х равных многоугольников, расположенных в параллельных плоскостях и п - параллелограммов наз призмой.

Многоугольники А1А2..А(п) и В1В2..В(п) – основания призмы . А1А2В2В1…-параллелограмы , А(п)А1В1В(п) –боковые грани. Отрезки А1В1, А2В2..А(п)В(п) – боковые ребра. В зависимости от многоугольника, лежащего в основании призмы, призма наз п-угольной. Перпендикуляр, проведенный из любой точки одного основания к плоскости другого основания наз высотой. Если боковые ребра призмы перпендикулярны к основанию, то призма – прямая , а если не перпендикулярны – то наклонная. Высота прямой призмы равна длине ее бокового ребра. Прямая призманаз правильной , если ее основание – правильные многоугольники, все боковые грани – равные прямоугольники.

ПАРАЛЛЕПИПЕД

АВСД//А1В1С1Д1, АА1//ВВ1//СС1//ДД1, АА1=ВВ1=СС1=ДД1 (по св-ву параллельных плоскостей)

Параллепипед состоит из 6 параллелограммов. Параллелограммы наз гранями. АВСД и А1В1С1Д1 – основания, остальные грани наз боковыми. Точки А В С Д А1 В1 С1 Д1 –вершины. Отрезки, соединяющие вершины – ребра. АА1, ВВ1, СС1, ДД1 – боковые ребра.

Диагональю параллепипеда – наз отрезок, соединяющий 2 вершины, не принадлежащие 1 грани.

Св-ва

1. противоположные грани параллепипеда параллельны и равны. 2. Диагонали параллепипеда пересекаются в одной точке и делятся этой точкой пополам.

ПИРАМИДА

Рассмотрим многоугольник А1А2..А(п), точку Р, не лежащую в плоскости этого многоугольника. Соединим точку Р с вершинами многоугольника и получим п треугольников: РА1А2, РА2А3….РА(п)А1.

Многогранник, составленный из п-угольника и п-треугольников наз пирамидой. Многоугольник – основание. Треугольники – боковые грани. Р – вершина пирамиды. Отрезки А1Р, А2Р..А(п)Р – боковые ребра. В зависимости от многоугольника, лежащего в основании, пирамида наз п-угольной. Высотой пирамиды наз перпендикуляр, проведенный из вершины к плоскости основания. Пирамида наз правильной , если в ее основании лежит правильный многоугольник и высота попадает в центр основания. Апофема – высота боковой грани правильной пирамиды.

УСЕЧЕННАЯ ПИРАМИДА

Рассмотрим пирамиду РА1А2А3А(п). проведем секущую плоскость, параллельную основанию. Эта плоскость делит нашу пирамиду на 2 части: верхняя – пирамида, подобная данной, нижняя – усеченная пирамида. Боковая поверхность состоит из трапеции. Боковые ребра соединяют вершины оснований.

Теорема: площадь боковой поверхности правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Выпуклый многогранник наз правильным , если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и тоже число ребер. Примером правильного многогранника явл куб. Все его грани- равные квадраты, и в каждой вершине сходится 3 ребра.

Правильный тетраэдр составлен их 4 равносторонних треугольников. Каждая вершина – вершина 3 треугольников. Сумма плоских углов при каждой вершине 180.

Правильный октаэдр сост из 8 равносторонник треугольников. Каждая вершина – вершина 4 треугольников. Сумма плоских углов при каждой вершине =240

Правильный икосаэдр сост из 20 равносторонних треугольников. Каждая вершина – вершина 5 треугольник. Сумма плоских углов при каждой вершине 300.

Куб сост из 6 квадратов. Каждая вершина – вершина 3 квадратов. Сумма плоских углов при каждой вершине =270.

Правильный додекаэдр сост из 12 правильных пятиугольников. Каждая вершина – вершина 3 правильных пятиугольников. Сумма плоских углов при каждой вершине =324.

Других видов правильных многогранников нет.

ЦИЛИНДР

Тело, ограниченное цилиндрической поверхностью и двумя кругами с границами L и L1 наз цилиндром. Круги L и L1 наз основаниями цилиндра. Отрезки ММ1, АА1 – образующие. Образующие сост цилиндрическую или боковую поверхность цилиндра. Прямая, соед центры оснований О и О1 наз осью цилиндра. Длина образующей – высота цилиндра. Радиус основания (r) –радиус цилиндра.

Сечения цилиндра

Осевое проходит через ось и диаметр основания

Перпендикулярное к оси

Цилиндр – это тело вращения. Он получается вращением прямоугольника вокруг 1 из сторон.

КОНУС

Рассмотрим окружность (о;r) и прямую ОР перпендикулярную к плоскости этой окружности. Через каждую точку окружности L и т.Р проведем отрезки, их бесконечно много. Они образуют коническую поверхность и наз образующими.

Р- вершина , ОР – ось конической поверхности .

Тело, ограниченное конической поверхностью и кругом с границей L наз конусом. Круг – основание конуса. Вершина конической поверхности – вершина конуса. Образующие коническую поверхность – образующие конуса. Коническая поверхность – боковая поверхность конуса. РО – ось конуса. Расстояние от Р до О – высота конуса. Конус – это тело вращения. Он получается вращением прямоуг треугольника вокруг катета.

Сечение конуса

Осевое сечение

Сечение перпендикулярное оси

СФЕРА И ШАР

Сферой наз поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Данная точка – центр сферы. Данной расстояние – радиус сферы.

Отрезок, соединяющ 2 точки сферы и проходящий через ее центр наз диаметром сферы.

Тело, ограниченное сферой наз шаром. Центр, радиус и диаметр сферы наз центром, радиусом и диаметром шара.

Сфера и шар –это тела вращения. Сфера получается вращением полуокружности вокруг диаметра, а шар получается вращением полукруга вокруг диаметра.

в прямоугольной системе координат уравнение сферы радиуса R с центром С(х(0), у(0), Z(0) имеет вид (х-х(0))(2)+(у-у(0))(2)+(z-z(0))(2)= R(2)

Выносной элемент.

выносным элементом.



  • а) не иметь общих точек;

Теорема.

Обозначение разрезов

В ГОСТ 2.305-2008 предусмотрены следующие требования к обозначению разреза:

1. Положение секущей плоскости указывают на чертеже линией сечения.

2. Для линии сечения должна применяться разомкнутая линия (толщина от S до 1,5S длина линии 8-20 мм).

3. При сложном разрезе штрихи проводят также у мест пересечения секущих плоскостей между собой.

4. На начальном и конечном штрихах следует ставить стрелки, указывающие направление взгляда, стрелки должны наноситься на расстоянии 2-3 мм от внешнего конца штриха.

5. Размеры стрелок должны соответствовать приведенным на рисунке 14.

6. Начальный и конечный штрихи не должны пересекать контур соответствующего изображения.

7. У начала и конца линии сечения, а при необходимости и у мест пересечения секущих плоскостей ставят одну и ту же прописную букву русского алфавита. Буквы наносят около стрелок, указывающих направление взгляда, и в местах пересечения со стороны внешнего угла (рисунок 24).

Рисунок 24 - Примеры обозначения разреза

8. Разрез должен быть отмечен надписью по типу «А-А» (всегда двумя буквами через тире).

9. Когда секущая плоскость совпадает с плоскостью симметрии предмета в целом, а соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены какими – либо другими изображениями, для горизонтальных, фронтальных и профильных разрезов не отмечают положение секущей плоскости, и разрез надписью не сопровождают.

10. Фронтальным и профильным разрезам, как правило, придают положение, соответствующее принятому для данного предмета на главном изображении чертежа.

11. Горизонтальные, фронтальные и профильные разрезы могут быть расположены на месте соответствующих основных видов.

12. Допускается располагать разрез на любом месте поля чертежа, а также с поворотом с добавлением условного графического обозначения - значка «Повернуто» (рисунок 25).

Рисунок 25 - Условное графическое обозначение – значок «Повернуто»

Обозначение сечений подобно обозначению разрезов и состоит из следов секущей плоскости и стрелки, указывающей направление взгляда, а также буквы, проставляемой с наружной стороны стрелки (рисунок1в, рисунок3). Вынесенное сечение не надписывают и секущую плоскость не показывают, если линия сечения совпадает с осью симметрии сечения, а само сечение расположено на продолжении следа секущей плоскости или в разрыве между частями вида. Для симметричного наложенного сечения секущую плоскость также не показывают. Если сечение несимметричное и расположено в разрыве или является наложенным (рисунок 2 б), линию сечения проводят со стрелками, но буквами не обозначают.

Сечение допускается располагать с поворотом, снабжая надпись над сечением словом «повернуто». Для нескольких одинаковых сечений, относящихся к одному предмету, линии сечений обозначают одной и той же буквой и вычерчивают одно сечение. В случаях, если сечение получается состоящим из отдельных частей, следует применять разрезы.

Прямая общего положения

Прямой общего положения (рис.2.2) называют прямую, не параллельную ни одной из данных плоскостей проекций. Любой отрезок такой прямой проецируется в данной системе плоскостей проекций искаженно. Искаженно проецируются и углы наклона этой прямой к плоскостям проекций.

Рис. 2.2.

Прямые частного положения
К прямым частного положения относятся прямые, параллельные одной или двум плоскостям проекций.
Любую линию (прямую или кривую), параллельную плоскости проекций, называют линией уровня. В инженерной графике различают три основные линии уровня: горизонталь, фронталь и профильную линии.

Рис. 2.3-а

Горизонталью называют любую линию, параллельную горизонтальной плоскости проекций (рис.2.З-а). Фронтальная проекция горизонтали всегда перпендикулярна линиям связи. Любой отрезок горизонтали на горизонтальную плоскость проекций проецируется в истинную величину. В истинную величину проецируется на эту плоскость и угол наклона горизонтали (прямой) к фронтальной плоскости проекций. В качестве примера на рис.2.З-а дано наглядное изображение и комплексный чертеж горизонтали h , наклоненной к плоскости П 2 под углом b .
Рис. 2.3-б

Фронталью называют линию, параллельную фронтальной плоскости проекций (рис.2.3-б). Горизонтальная проекция фронтали всегда перпендикулярна линиям связи. Любой отрезок фронтали на фронтальную плоскость проекций проецируется в истинную величину. В истинную величину проецируется на эту плоскость и угол наклона фронтали (прямой) к горизонтальной плоскости проекций (угол a ).
Рис. 2.3-в

Профильной линией называют линию, параллельную профильной плоскости проекций (рис.2.З-в). Горизонтальная и фронтальная проекции профильной линии параллельны линиям связи этих проекций. Любой отрезок профильной линии (прямой) проецируется на профильную плоскость в истинную величину. На эту же плоскость проецируются в истинную величину и углы наклона профильной прямой к плоскостям проекций П 1 и П 2 . При задании профильной прямой на комплексном чертеже нужно обязательно указать две точки этой прямой.

Прямые уровня, параллельные двум плоскостям проекций, будут перпендикулярны третьей плоскости проекций. Такие прямые называют проецирующими. Различают три основные проецирующие прямые: горизонтально, фронтально и профильно проецирующие прямые.
Рис. 2.3-г Рис. 2.3-д Рис. 2.3-е

Горизонтально проецирующей прямой (рис.2.З-г) называют прямую, перпендикулярную плоскости П 1 . Любой отрезок этой прямой проецируется на плоскость П П 1 - в точку.

Фронтально проецирующей прямой (рис.2.З-д) называют прямую, перпендикулярную плоскости П 2 . Любой отрезок этой прямой проецируется на плоскость П 1 без искажения, а на плоскость П 2 - в точку.

Профильно проецирующей прямой (рис.2.З-е) называют прямую, перпендикулярную плоскости П 3 , т.е. прямую, параллельную плоскостям проекций П 1 и П 2 . Любой отрезок этой прямой проецируется на плоскости П 1 и П 2 без искажения, а на плоскость П 3 - в точку.

Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:

1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (h//П1)(рис.6.4).

Рисунок 6.4 Горизонталь

2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (f//П2)(рис.6.5).

Рисунок 6.5 Фронталь

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (р//П3) (рис.6.6). Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.

Рисунок 6.6 Профильная прямая

4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.6.7). Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.

Рисунок 6.7 Линия наибольшего ската

Кинематический способ образования поверхностей. Задание поверхности на чертеже.

В инженерной графике поверхность рассматривают как множество последовательных положений линии, перемещающейся в пространстве по определенному закону. В процессе образования поверхности линия 1 может оставаться неизменной или менять свою форму.
Для наглядности изображения поверхности на комплексном чертеже закон перемещения целесообразно задавать графически в виде семейства линий (а, b, с). Закон перемещения линии 1 может быть задан двумя (а и b) или одной (а) линией и дополнительными условиями, уточняющими закон перемещения 1.
Перемещающаяся линия 1 называется образующей, неподвижные линии a, b, c - направляющими.
Процесс образования поверхности рассмотрим на примере, приведенном на рис.3.1.
Здесь в качестве образующей взята прямая 1. Закон перемещения образующей задан направляющей а и прямой b. При этом имеется в виду, что образующая 1 скользит по направляющей а, все время оставаясь параллельной прямой b.
Такой способ образования поверхностей называют кинематическим. С его помощью можно образовывать и задавать на чертеже различные поверхности. В частности, на рис.3.1 изображен самый общий случай цилиндрической поверхности.

Рис. 3.1.

Другим способом образования поверхности и ее изображения на чертеже является задание поверхности множеством принадлежащих ей точек или линий. При этом точки и линии выбирают так, чтобы они давали возможность с достаточной степенью точности определять форму поверхности и решать на ней различные задачи.
Множество точек или линий, определяющих поверхность, называют ее каркасом.
В зависимости от того, чем задается каркас поверхности, точками или линиями, каркасы подразделяют на точечные и линейные.
На рис.3.2 показан каркас поверхности, состоящий из двух ортогонально расположенных семейств линий a1, a2, a3, ..., an и b1, b2, b3, ..., bn.

Рис. 3.2.

Конические сечения.

КОНИЧЕСКИЕ СЕЧЕНИЯ, плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы.

Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала. Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении.

РАННЯЯ ИСТОРИЯ

Открывателем конических сечений предположительно считается Менехм (4 в. до н.э.), ученик Платона и учитель Александра Македонского. Менехм использовал параболу и равнобочную гиперболу для решения задачи об удвоении куба.

Трактаты о конических сечениях, написанные Аристеем и Евклидом в конце 4 в. до н.э., были утеряны, но материалы из них вошли в знаменитые Конические сечения Аполлония Пергского (ок. 260–170 до н.э.), которые сохранились до нашего времени. Аполлоний отказался от требования перпендикулярности секущей плоскости образующей конуса и, варьируя угол ее наклона, получил все конические сечения из одного кругового конуса, прямого или наклонного. Аполлонию мы обязаны и современными названиями кривых – эллипс, парабола и гипербола.

В своих построениях Аполлоний использовал двухполостной круговой конус (как на рис. 1), поэтому впервые стало ясно, что гипербола – кривая с двумя ветвями. Со времен Аполлония конические сечения делятся на три типа в зависимости от наклона секущей плоскости к образующей конуса. Эллипс (рис. 1,а) образуется, когда секущая плоскость пересекает все образующие конуса в точках одной его полости; парабола (рис. 1,б) – когда секущая плоскость параллельна одной из касательных плоскостей конуса; гипербола (рис. 1,в) – когда секущая плоскость пересекает обе полости конуса.

ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ

Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

Эллипс.

Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большей и малой осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.

рис. 2 Эллипсис

Гипербола.

При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рис. 3,а. Расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1 и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно потравливая (т.е. отпуская) ее. Вторую ветвь гиперболы (PўV2Qў) мы вычерчиваем, предварительно поменяв ролями шпеньки F1 и F2.

рис. 3 гипербола

Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рис. 3,б. Угловые коэффициенты этих прямых равны ± (v1v2)/(V1V2), где v1v2 – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F1F2; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном

от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.

Парабола.

Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (2-я пол. 3 в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (6 в.). Расположим линейку так, чтобы ее край совпал с директрисой LLў (рис. 4), и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой LLў, так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, т.е. PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.

ОТВЕТЫ НА БИЛЕТЫ: № 1 (не полностью), 2 (не полностью), 3 (не полностью), 4, 5, 6, 7, 12, 13, 14 (не полностью), 16, 17, 18, 20, 21, 22, 23, 26,

Выносной элемент.

При выполнении чертежей в некоторых случаях появляется необходимость в построении дополнительного отдельного изображения какой-либо части предмета, требующей пояснений в отношении формы, размеров или других данных. Такое изображение называется выносным элементом. Его выполняют обычно увеличенным. Выносной элемент может быть выложен как вид или как разрез.

При построении выносного элемента соответствующее место основного изображения отмечают замкнутой сплошной тонкой линией, обычно овалом или окружностью, и обозначают заглавной буквой русского алфавита на полке линии-выноски. У выносного элемента делается запись по типу А (5: 1). На рис. 191 приведен пример выполнения выносного элемента. Его располагают возможно ближе к соответствующему месту на изображении предмета.

1. Метод прямоугольного (ортогонального) проецирования. Основные инвариантные свойства прямоугольного проецирования. Эпюр Монжа.

Ортогональное (прямоугольное) проецирование есть частный случай проецирования параллельного, когда все проецирующие лучи перпендикулярны плоскости проекций. Ортогональным проекциям присущи все свойства параллельных проекций, но при прямоугольном проецировании проекция отрезка, если он не параллелен плоскости проекций, всегда меньше самого отрезка (рис. 58). Это объясняется тем, что сам отрезок в пространстве является гипотенузой прямоугольного треугольника, а его проекция - катетом: А"В" = ABcos a.

При прямоугольном проецировании прямой угол проецируется в натуральную величину, когда обе стороны его параллельны плоскости проекций, и тогда, когда лишь одна из его сторон параллельна плоскости проекций, а вторая сторона не перпендикулярна этой плоскости проекций.

Взаимное расположение прямой и плоскости.

Прямая и плоскость в пространстве могут :

  • а) не иметь общих точек;
  • б) иметь ровно одну общую точку;
  • в) иметь хотя бы две общие точки.

На рис. 30 изображены все эти возможности.

В случае а) прямая b параллельна плоскости : b || .

В случае б) прямая l пересекает плоскость в одной точке О; l = О.

В случае в) прямая а принадлежит плоскости : а или а .

Теорема. Если прямая b параллельна хотя бы одной прямой а, принадлежащей плоскости , то прямая параллельна плоскости .

Предположим, что прямая m пересекает плоскость в точке Q.Если m перпендикулярна каждой прямой плоскости , проходящей через точку Q, то прямая m называется перпендикулярной к плоскости .

Трамвайные рельсы иллюстрируют принадлежность прямых плоскости земли. Линии электропередачи параллельны плоскости земли, а стволы деревьев могут служить примерами прямых, пересекающих поверхность земли, некоторые перпендикулярные плоскости земли, другие - не перпендикулярные (наклонные).

БИЛЕТ 16.

Свойства пирамиды, у которой двугранные углы равны.

А)Если боковые грани пирамиды с её основанием образуют равные двугранные углы, то все высоты боковых граней пирамиды равны (у правильной пирамиды это апофемы), и вершина пирамиды проектируется в центр окружности, вписанной в многоугольник основания.

Б) У пирамиды могут быть равные двугранные углы при основании тогда, когда в многоугольник основания можно вписать окружность.

Призма. Определение. Элементы. Виды призм.

Призма- это многогранник, две грани которого являются равными многоугольниками, находящимися в параллельных плоскостях, а остальные грани - параллелограммами.

Грани, которые находятся в параллельных плоскостях, называются основаниями призмы, а остальные грани - боковыми гранями призмы.

В зависимости от основания призмы бывают:

1) треугольными

2) четырёхугольными

3) шестиугольными

Призма с боковыми рёбрами, перпендикулярными её основаниям, называется прямой призмой.

Прямая призма называется правильной, если её основания - правильные многоугольники.

БИЛЕТ 17.

Свойство диагоналей прямоугольного параллелепипеда.

Все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

В прямоугольном параллелепипеде все диагонали равны.

В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трёх его измерений.

Проведя диагональ основания АС, получим треугольники АС 1 С и АСВ. Оба они прямоугольные: первый потому, что параллелепипед прямой и, следовательно, ребро СС 1 перпендикулярно к основанию; второй потому, что параллелепипед прямоугольный и, значит, в основании его лежит прямоугольник. Из этих треугольников находим:

АС 1 2 = АС 2 + СС 1 2 и АС 2 = АВ 2 + ВС 2

Следовательно, AC 1 2 = АВ 2 + ВС 2 + СС 1 2 = АВ 2 + AD 2 + АА 1 2 .

Случаи взаимного расположения двух плоскостей.

СВОЙСТВО 1 :

Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.

СВОЙСТВО 2:

Отрезки параллельных прямых, заключённых между двумя параллельными плоскостями, равны по длине.

СВОЙСТВО 3

Через каждую точку пространства, не лежащую в данной плоскости, можно провести плоскость, параллельную этой плоскости, и притом только одну.

БИЛЕТ 18.

Свойство противоположных граней параллелепипеда.

Противоположные грани параллелепипеда параллельны и равны.

Например, плоскости параллелограммов АА 1 В 1 В и DD 1 C 1 C параллельны, так как пересекающиеся прямые АВ и АА 1 плоскости АА 1 В 1 соответственно параллельны двум пересекающимся прямым DC и DD 1 плоскости DD 1 C 1 . Параллелограммы АА 1 В 1 В и DD 1 C 1 C равны (т. е. их можно совместить наложением), так как равны стороны АВ и DС, АА 1 и DD 1 , и равны углы А­ 1 АВ и D 1 DC.

Площади поверхностей призмы, пирамиды, правильной пирамиды.

Правильная пирамида: Sполн.пов. =3SASB+Sосн.

Прямая может принадлежать и не принадлежать плоскости. Она принадлежит плоскости, если хотя бы две точки ее лежат на плоскости. На рисунке 93 показана плоскость Sum (axb). Прямая l принадлежит плоскости Sum, так как ее точки 1 и 2 принадлежат этой плоскости.

Если прямая не принадлежит плоскости, она может быть параллельной ей или пересекать ее.

Прямая параллельна плоскости, если она параллельна другой прямой, лежащей в этой плоскости. На рисунке 93 прямая m || Sum , так как она параллельна прямой l , принадлежащей этой плоскости.

Прямая может пересекать плоскость под различными углами и, в частности, быть перпендикулярной ей. Построение линий пересечения прямой с плоскостью приведено в §61.

Рисунок 93 - Прямая, принадлежащая плоскости

Точка по отношению к плоскости может быть расположена следующим образом: принадлежать или не принадлежать ей. Точка принадлежит плоскости, если она расположена на прямой, расположенной в этой плоскости. На рисунке 94 показан комплексный чертеж плоскости Sum, заданной двумя параллельными прямыми l и п. В плоскости расположена линия m. Точка A лежит в плоскости Sum, так как она лежит на прямой m. Точка В не принадлежит плоскости, так как ее вторая проекция не лежит на соответствующих проекциях прямой.

Рисунок 94 - Комплексный чертеж плоскости, заданной двумя параллельными прямыми

Коническая и цилиндрическая поверхности

К коническим относятся поверхности, образованные перемещением прямолинейной образующей l по криволинейной направляющей m. Особенностью образования конической поверхности является то, что при этом одна точка образующей всегда неподвижна. Эта точка является вершиной конической поверхности (рисунок 95, а). Определитель конической поверхности включает вершину S и направляющую m, при этом l "~S; l "^ m.

К цилиндрическим относятся поверхности, образованные прямой образующей /, перемещающейся по криволинейной направляющей т параллельно заданному направлению S (рисунок 95, б). Цилиндрическую поверхность можно рассматривать как частный случай конической поверхности с бесконечно удаленной вершиной S.

Определитель цилиндрической поверхности состоит из направляющей т и направления S, образующих l , при этом l" || S; l" ^ m.

Если образующие цилиндрической поверхности перпендикулярны плоскости проекций, то такую поверхность называют проецирующей. На рисунке 95, в показана горизонтально проецирующая цилиндрическая поверхность.

На цилиндрической и конической поверхностях заданные точки строят с помощью образующих, проходящих через них. Линии на поверхностях, например линия а на рисунок 95, в или горизонтали h на рисунке 95, а, б, строятся с помощью отдельных точек, принадлежащих этим линиям.



Рисунок 95 - Коническая и цилиндрическая поверхности

Торсовые поверхности

Торсовой называется поверхность, образованная прямолинейной образующей l , касающейся при своем движении во всех своих положениях некоторой пространственной кривой т, называемой ребром возврата (рисунок 96). Ребро возврата полностью задает торс и является геометрической частью определителя поверхности. Алгоритмической частью служит указание касательности образующих к ребру возврата.

Коническая поверхность является частным случаем торса, у которого ребро возврата т выродилось в точку S - вершину конической поверхности. Цилиндрическая поверхность - частный случай торса, у которого ребро возврата - точка в бесконечности.

Рисунок 96 – Торсовая поверхность

Гранные поверхности

К гранным относятся поверхности, образованные перемещением прямолинейной образующей l по ломаной направляющей m. При этом если одна точка S образующей неподвижна, создается пирамидальная поверхность (рисунок 97), если образующая при перемещении параллельна заданному направлению S, то создается призматическая поверхность (рисунок 98).

Элементами гранных поверхностей являются: вершина S (у призматической поверхности она находится в бесконечности), грань (часть плоскости, ограниченная одним участком направляющей m и крайними относительно него положениями образующей l ) и ребро (линия пересечения смежных граней).

Определитель пирамидальной поверхности включает в себя вершину S, через которую проходят образующие и направляющие: l" ~ S; l ^ т.

Определитель призматической поверхности, кроме направляющей т, содержит направление S, которому параллельны все образующие l поверхности: l||S; l^ т.



Рисунок 97 - Пирамидальная поверхность

Рисунок 98 - Призматическая поверхность

Замкнутые гранные поверхности, образованные некоторым числом (не менее четырех) граней, называются многогранниками. Из числа многогранников выделяют группу правильных многогранников, у которых все грани правильные и конгруэнтные многоугольники, а многогранные углы при вершинах выпуклые и содержат одинаковое число граней. Например: гексаэдр - куб (рисунок 99, а), тетраэдр - правильный четырехугольник (рисунок 99, 6) октаэдр - многогранник (рисунок 99, в). Форму различных многогранников имеют кристаллы.

Рисунок 99 - Многогранники

Пирамида - многогранник, в основании которого лежит произвольный многоугольник, а боковые грани - треугольники с общей вершиной S.

На комплексном чертеже пирамида задается проекциями ее вершин и ребер с учетом их видимости. Видимость ребра определяется с помощью конкурирующих точек (рисунок 100).

Рисунок 100 – Определение видимости ребра с помощью конкурирующих точек

Призма - многогранник, у которого основание - два одинаковых и взаимно параллельных многоугольника, а боковые грани - параллелограммы. Если ребра призмы перпендикулярны плоскости основания, такую призму называют прямой. Если у призмы ребра перпендикулярны какой-либо плоскости проекций, то боковую поверхность ее называют проецирующей. На рисунке 101 дан комплексный чертеж прямой четырехугольной призмы с горизонтально проецирующей поверхностью.

Рисунок 101 - Комплексный чертеж прямой четырехугольной призмы с горизонтально проецирующей поверхностью

При работе с комплексным чертежом многогранника приходится строить на его поверхности линии, а так как линия есть совокупность точек, то необходимо уметь строить точки на поверхности.

Любую точку на гранной поверхности можно построить с помощью образующей, проходящей через эту точку. На рисунке 100 в грани ACS построена точка М с помощью образующей S-5.

Винтовые поверхности

К винтовым относятся поверхности, создаваемые при винтовом движении прямолинейной образующей. Линейчатые винтовые поверхности называют геликоидами.

Прямой геликоид образуется движением прямолинейной образующей i по двум направляющим: винтовой линии т и ее оси i ; при этом образующая l пересекает винтовую ось под прямым углом (рисунок 102, а). Прямой геликоид используется при создании винтовых лестниц, шнеков, а также силовых резьбах, в станках.

Наклонный геликоид образуется движением образующей по винтовой направляющей т и ее оси i так, что образующая l пересекает ось i под постоянным углом φ, отличным от прямого, т. е. в любом положении образующая l параллельна одной из образующих направляющего конуса с углом при вершине, равным 2φ (рисунок 102, б). Наклонные геликоиды ограничивают поверхности витков резьбы.

Рисунок 102 - Геликоиды

Поверхности вращения

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i , представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i . Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рисунке 103 точка М построена на параллели h 4 .

Рисунок 103 – Построение точки на криволинейной поверхности

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рисунок 104, а ). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рисунок 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рисунок 104, в ). Точка A на поверхности сферы принадлежит главному меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Рисунок 104 - Образование поверхностей вращения

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рисунок 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рисунок 105, б). Открытый тор называется еще кольцом.

Рисунок 105 – Образование тора

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рисунок 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рисунок 106, б ) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рисунок 106, в ) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рисунок 106, г ) - вращением гиперболы вокруг действительной оси.

Рисунок 106 – Образование поверхностей вращения кривыми второго порядка

В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см рисунки 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см рисунок 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Чтобы получить круговой конус (см рисунок 104, а ), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см рисунок 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Понравилась статья? Поделитесь ей
Наверх